Nytt liv til en gammel arbeidshest

Endelig er jeg ferdig et prosjekt som er meg hjertet nært. Et prosjekt jeg har holdt på med siden skoleåret startet i fjor. Min helt egen custom Mauser 98 i .30-06 Springfield! Det ser kanskje ikke sånn ut, men den startet livet som en Karabiner 98k i den tyske hær under andre verdenskrig. En slik som er avbildet under.

Det er ikke min spesifikke rifle jeg holder i bildet over, det er faktisk den som ligger bak. Da jeg overtok den hadde den en gammel, sliten sporter-stokk på seg, men den startet som sagt livet på samme vis som den jeg holder her. Mange av disse riflene som ble liggende igjen etter krigen ble tatt i bruk i Hæren, men kort etter konvertert til .30-06 og gitt til Heimevernet da vi adopterte M1 Garand. På ett eller annet tidspunkt hadde den blitt kamret om til .308 Winchester (som noen få ble da dette ble NATO standard) som jeg ikke fant ut før jeg allerede var på skytebanen og hadde kjøpt .30-06 skudd. Ugh...

Men jeg trengte et våpen til både trening og jakt og tenkte det var en fin anledning til å ha et eget våpen jeg kunne bruke på skytedagene vi skulle ha. Prosjektet startet enkelt nok med den simple endring at jeg ville ha den i .30-06 og en ny stokk. Det ene førte til det andre og plutselig er det eneste originale igjen på børsa låsekassa og sluttstykket. Som er blitt tungt modifisert de og.

Det har vært en lang og lærerik reise med oppturer og nedturer.

 

Kamring og dreiing av nytt løp

Aller først fjernet jeg selvsagt løpet. Det satt godt fast så låsekassa måtte varmes opp for å løsne det.

Den originale løpsprofilen er fler-steget, eller trappet, og personlig er jeg ikke noen tilhenger av designet. For ikke å nevne at det ikke lar seg gjøre å kammre om et .308 løp til .30-06 uten å fjerne en del av kammer-enden siden tykkelsen på .30-06 hylsen er mindre der den treffer .308 skulderen enn .308 er, slik at det ville dannet seg en grop i kammeret her som ville gjort at hylsen ville blitt deformert/sprukket/satt seg fast ved avfyring.

Det er ingen spesiell grunn til at jeg ville ha .30-06 annet enn at jeg liker kaliberet og det en kraftig og allsidig patron. Riflen skal brukes til storviltjakt og langholdsskyting så et relativt grovt kaliber føltes riktig. Det går jo mye på følelser dette; og ikke nødvendigvis på tross av fakta.

Jeg fikk tak i en hylse som er et "adapter" som tilpasses diverse låsekasser og omgjør den til en delvis standardisert festemetode slik at våpenet blir et 'systemvåpen', altså at brukeren kan enkelt skifte løp dersom et annet kaliber kreves eller ønskes brukt i samme våpen.

Kammeret er selvsagt fortsatt i løpet, men det stikker på en måte ut av løpet og tres inn i hylsen. På bildet over er hylsen satt på feil vei for å sjekke pasning. Denne krevde litt å lage; selve pasningen vist over hadde kun 0,03 millimeter unilateral negativ toleranse.

Over kan vi se hylsen skrudd på løpet og gjenger slått i hylsen for å passe i låsekassen (under).

Deretter brotsjes (les: rømmes) kammeret med hele smæla skrudd sammen.

Etter inspeksjon og testskyting av det nye kammeret viste det seg at jeg hadde fått en rivning i metallet under prosessen som hadde etterlatt seg et dypt sår inne i kammeret og som deformerte patronen som vist på bildet under. Dette gjorde den svært vanskelig å få ut, men det gikk heldigvis med bare litt makt. Den dårlige nyheten var jo selvsagt at jeg måtte gjøre alt på nytt, inkludert å lage det presise hylse-partiet om igjen også... 

Men andre gangen gikk det knirkefritt og resultatet ble tilfredsstillende.

Under dreier jeg ned det nye, nå ferdig kammrede, løpsemnet fra Lothar Walter. I første omgang kun ren masseavvirkning for å tynne løpet.

Konusdreiing for å fullføre løpsprofilen. Her brukte jeg brille for å minimere vibrasjoner og optimalisere maskinert overflatefinhet før puss.

Løpet behøver ikke være så veldig tykt, men et tykkere løp bidrar til økt presisjon. Jeg lot løpet være ganske tykt fordi jeg vill ha høy presisjon og løpet skulle uansett flutes for å fjerne noe vekt. Den koniske profilen på løpet bidrar til et slankere og helhetlig visuelt inntrykk med tanke på perspektiv.

 

Fluting

Jeg flutet løpet, hovedsakelig for utseende, men også for å redusere vekt. Dette var stort sett en langsom og kjedelig prosess siden matehastigheten var så lav. Når ett kutt tar ca 15 min og 5 fluter på 3-4 kutt per flute... det tok tid. Men verktøyet var flunkende nytt og prosessen ny for meg så jeg tok det heller litt med ro enn å forhaste meg. Finishen på flutene ble også veldig bra.

På tross av den langsomme prosessen var det en svært interessant og lærerik prosess. I bildet over klokker jeg inn løpet slik at kuttsiden er parallell med X-aksen. Siden løpet er konisk må det spennes opp litt på skrå for at flutens tykkesle skal bli jevn. Det ble spent opp i et delehode og en senterspiss med en vinkelplate som støtte bak. En liten innretning med et spor i satt rundt løpet og ble brukt for å trekke mot vinkelplaten og holde det stramt på plass. 

Det viktigste her er at flutene blir symmetrisk, så den første fluten må stilles inn i forhold til hvordan løpet sitter i låsekassa. Jeg monterte det fast i rifla og merket opp med en av de andre fresene hvor midten/toppen av løpet var. Deretter monterte jeg det opp i oppspenningen over og brukte en høyderissemåler/rissefot får å vise midten av løpet og roterte delehodet til den rissede linjen og høyderissemåleren møttes. Jeg gjorde også noen små testkutt for å verifisere at verktøyet fulgte denne linjen. Nå skulle den første fluten teoretisk sett bli midt oppå løpet.

Jeg lagde som nevnt 5 fluter, av den enkle grunn at det gjorde at jeg slapp å flytte vinkelplaten for hver rotasjon, siden med et oddetall fluter vil løpet alltid hvile mot vinkelplaten på en ribbe og ikke på en flute. Jeg er av den tro at et partall fluter, som er fullstendig symmetrisk, vil gi et stivere løp siden den totale tykkelsen mellom ribbene blir større enn med et oddetall fluter, men det skal tydeligvis ikke utgjøre så stor forskjell.

Et annet viktig moment å tenke på er hvordan løpet er tilvirket. Hvordan det er laget, om det er varmhamret eller kaldhamret eller om riflingene er påført i etterkant med en "button" som dras gjennom pipa kan påvirke hvordan løpet reagerer på å bli flutet. Det kan hende det innfører spenninger ved å lage en hel dyp flute på en gang før man tar den neste, eller det kan gå fint, men man kan trenge å ta alle kutt av samme dybde før man øker kuttdybden for å opprettholde rettheten i pipa, men det var heldigvis ikke et problem for meg med dette løpet.

 

Låsekassen

Mye ble gjort med selve låsekassen og sluttstykket.

Mest interessant av alt er vel en idé jeg fikk av mine mentorer på XXL. Mauser-låsekassen er relativt fleksibel og svak p.g.a utsparingen til tommelen som er der for at våpenet skal kunne bli ladet med stripper-clips. Så tanken er å sveise igjen dette hullet for å stive opp kassa. Hvilket jeg gjorde. 

Jeg lagde en bit av vanlig maskinstål som passet sånn høvelig greit i hullet med litt overmål og MIGet den fast utenpå og inni. Deretter freste jeg vekk det verste og avsluttet med fil. 

Utenom det ble det tilvirket en ny picatinny-skinne som jeg har skrevet om tidligere og nye monstasjehull boret og gjenget.

Nytt avtrekk ble installert, Timney FWD med avtrekkersikring. Siden jeg nå hadde sikring på avtrekkeren ble den originale direkte sikringen på shroud'en fjernet og ny shroud ble kjøpt. Dette er riktignok litt mindre sikkert, men fortsatt sikkert nok.

Utdrageren og bolt-stoppen ble blå-anløpt og jeg monterte en ny selvdesignet hevarm.

Jeg kjøpte også Superior Shooting speedlock-system som er et tennstempel av titan eller stål og aluminium med en ny fjær i krom-silikon legering. Dette kan senke tiden fra avtrekk til skuddet går med flere millisekunder.

 

Rekylbrems

Jeg lagde min egen rekylbrems som er uthulet og plugget igjen for å fange og redirigere så mye av munninggassene som mulig.

Den fanger gassene og omdirigerer dem ut til sidene, oppover og bakover. Også ser den tøff ut.

 

Cerakote

Da alt var ferdig var det på tide å cerakote løp og låskasse, samt andre smådeler. Når det kom til løpet ville jeg ha blanke fluter, så disse ble maskert og endene av løpet plugget.

Cerakote og Durakote er en form for lakk som inneholder keramiske partikler og herder over flere dager og produserer et motstandsdyktig og slitesterkt lag. Det er viktig ved påføring at det som skal sprayes er glass-/sandblåst, avfettet og tørt. Det påføres i èn omgang med mange lette lag, mye som annen pulverlakkering.

Nydelig.

 

Stokk og bedding

I utgangspunktet hadde jeg tenkt til å lage min egen stokk i tre, men siden jeg satte på skinne på låsekassa ville det bli knotete å fylle på ammunisjon i magasinet, så jeg ville ha en løsning med uttakbare boksmagasin. Det var noen greie løsninger der ute og planen var å benytte AICS magasiner med en long-action underbeslag, men det viste seg å være en veldig vanskelig kombinasjon å finne for Mauser. Så jeg endte opp med en AA98, en glassfiber-forsterket polymer-stokk fra Archangel. Denne har mange justeringsmuligheter, er spesialtilpasset M98 og kommer med magasinløsning og et magasin. Jeg kjøpte også to ekstra magasiner, fordi hva er poenget med boksmagasinsystem med bare ett magasin?

Men selv om den kommer ferdig tilpasset var det ikke bra nok for meg. Ikke bare måtte jeg utvide løpskanalen til å passe det nye løpet mitt, jeg ville også bedde stokken. Det vil si å fylle i et epoxyharpiks i stokken for så å presse og skru fast låsekassa med dette stoffet i mellom og la det herde. Dette vil lage et eksakt avtrykk av låsekassa i stokken og den vil ligge godt og solid og vil ikke kunne røre på seg. Det vil også hindre at man drar inn spenninger i låsekassa når man skrur den i stokken som igjen vil bidra til økt presisjon.

Første steg er å rufse opp innsiden der epoxyen skal sitte. Det er kun nødvendig å bedde rundt festepunktene, dvs. rundt skruene, men det må der beddes helt opp til kanten av stokken og spesielt i rekylopptaket, vanligvis den utstikkende flaten ved den fremste skruen.

Det er viktig å lage dype og ru spor her slik at beddingen fester seg godt til stokken. Mange små ikke-parallelle kriker og kroker som limet kan flyte inn i lager et godt feste.

Deretter smøres låsekassen, skruene og alt annet som ikke skal ha lim på seg inn med f.eks. skokrem slik at limet ikke fester seg til annet enn stokken. Så blandes beddemassen som er en blanding av lim og herder, i dette tilfellet i et forhold på 1:4 herder/lim. Vi blandet her 20g lim og 5g herder. Krydre med litt svart fargepulver etter smak. Finhakk en håndfull isolasjon og ha i. Rør godt.

Man ønsker en konsistens slik at det ikke flyter og drypper av rørepinnen. Glassfiberet gir limet styrke og struktur.

Massen legges på og presses godt ned og inn i alle de tidligere nevnte kriker og kroker. En liten rygg av masse legges midt på for å hindre at det fanges luftbobler og som automatisk presses ut fra midten og sørger for en jevn spredning.

Man skrur så fast låsekassen, men ikke så hardt at de spenningene vi prøver å unngå blir bygget inn i beddingen. Så vi strammer til det stopper og så løsner opp til låsekassen ikke stiger mer.

Etter at det er herdet kan de største ansamlingene pirkes av og så kan mekanismen røskes ut av stokken.

Skruehullene kan trenge å bores opp siden det har samlet seg beddemasse i skruekanalene som kan gjøre de vanskelig å få inn skruene ordentlig.

 

Voila!

Annet tilbehør som er brukt:

  • Accu-Tac LR-10 tofot
  • Accu-Shot Mid-Range monopod
  • Vortex Viper PST 6-24x50 EBR-1 MRAD kikkertsikte
  • Daniel Defense QD sling mount
  • Magpul MS4 Dual QD GEN2 reim

Nå er jeg fornøyd og veldig glad! Jeg gleder meg til å ta den med på skytebanen og virkelig sette både den og meg på prøve.

Dreieverktøy og skjær

To av oppgavene vi har hatt er å slipe hurtigstål-skjær til dreiebenken. Vi skulle slipe et gjengeskjær og et kronestål. Begge er formverktøy som påfører en profil i arbeidsstykket:

Gjengeskjæret over ble slipt for hånd uten noen form for støtter og sjekket med et slipelære.

Skjæret er 60° slik at hver kuttside er 30° fra senterlinjen.

Klaringsvinklene er like på begge sider og skjæret har ingen innebygd vinkel siden heliksvinkelen for 60° gjenger er så liten at den kan ignoreres.

Dette verktøyet profilerer i X-retningen.

02.jpg

Kronestålet er et formverktøy på den mer tradisjonelle måten i det at den påfører en unormal form på arbeidstykket. Dette verktøyet har flere bruksmåter, men hovedbruken er å krone munningen på løp som jeg har snakket om tidligere. Verktøyet settes slik at spissen er inne i løpet og toppen av buen ligger midt på godset mellom innsiden og utsiden. Verktøyet føres så inn langs Z-aksen og påfører profilen på munningen. Dette vil da resultere i en klassisk jakt-kroning. Verktøyet kan også beveges litt frem å tilbake på X-aksen for å endre kroneprofilen. Dersom en 11° kroning ønskes kan tuppen av skjæret brukes til dette.

Weatherby-Vanguard-308Win-0006-crown.jpg

Jeg tenkte jeg skulle benytte anledningen til å skrive litt om typer skjær og bruksområder, fremstilling og gjenkjenning.

Det finnes hovedsaklig to typer dreieverktøy; hurtigstål og hardmetall.

Hurtigstål-blanks

Hardmetall-inserts

Hurtigstål

Hurtigstål er et høy-legert stål med et høyt karboninnhold som gjør det svært hardt, men sprøtt. Det tåler høyere temperaturer enn vanlig høy-karbon stål uten å miste hardheten sin, vanligvis opp til 500-600 °C. Denne motstandsdyktigheten til temperatur heter "red hardness" på engelsk. Det kalles hurtigstål fordi det er i stand til å bearbeide metall raskere og ved høyere turtall enn annet renere stål. Det er tilført stoffer som lager legeringer som forbedrer egenskapene og levetiden til verktøyet. De vanligste tilføringene er wolfram (W), molybden (Mo), krom (Cr), vanadium (V), kobolt (Co), mangan (Mn) og silikon (Si).

De to vanligste typene hurtigstål kategoriseres i to grupper: T-type og M-type, for hovedsakelig Tungsten(wolfram)-tilføringer og Molybden-tilføringer respektivt. T1 er et hovedsakelig wolfram-legert stål mens M2 er et hovedsakelig molybden-legert stål. Tallet bak bokstaven relaterer ikke nødvendigvis til noe spesielt med den ståltypen, det er først og fremst for å skille dem fra hverandre.

Det finnes uendelig mange varianter og typer hurtigstål, men de vanligste er oppført i tabellen under:

high_speed_chart.jpg

Som vi kan se på tabellen har M serien mye molybden og T serien mye wolfram, men wolfram er den klassiske og tidligere vanligste tilføringen, så M serien har mer wolfram enn T serien har molybden. Kobolt kan også tilføres for å øke levetiden og temperaturmotstanden, dette er da ofte opplyst på stålet. Vanlige benevnelser for dette er HSSE, HSS-E eller HSS-Co.

Wolfram er et tungt og sterkt, sjeldent metall, og har det høyeste smeltepunktet av alle elementer som er oppdaget, ved 3422 °C. Bedre kjent som Tungsten i engelsktalende land etter svensk tung sten, hvem skulle trodd... Wolfram brukes til mye rart, men mesteparten av verdens wolfram-utvinning går til produksjon av wolfram-karbid som brukes i hardmetall.

Molybden er et annet sterkt metall med et veldig høyt smeltepunkt ved 2623 °C. Det binder seg lett og lager harde og sterke bindinger i legeringer. Molybden opplever veldig liten termisk ekspansjon ved høye temperaturer.

Hurtigstål har stort sett en hardhet på over 60 HRC opp til ~67 HRC.

 

Sliping av hurtigstål

Hurtigstål brukes i veldig mange sponfraskillende verktøy, som bor, gjengetapper, freser, rømmere, brotsjer, etc. Men hurtigstål beregnet for bruk i dreiebenker leveres som blanke, uformede biter i mange ulike størrelser og former.

Fordelen med å bruke slike hurtigstål-blanks er at det kan slipes og formes til det formålet man behøver og kan skjærpes når det blir sløvt. 

Et typisk hurtigstål-skjær kan se slik ut:

Disse kalles hovedsakelig "single point cutters" på engelsk, ettersom det bare er ett punkt eller side som kutter, i motsetning til f.eks. et bor der det er to sider som kutter samtidig.

Det finnes mange ulike former etter hvilken operasjon som skal utføres:

Hvilket verktøy som er beregnet for hvilken retning og hva det eventuelt heter kan være litt forvirrende, men som en regel kan vi si at dersom man står mot dreiebenken er høyre-verktøy ikke verktøy som peker mot høyre eller har kuttsiden på høyre, men verktøy som er beregnet på å bevege seg fra høyre mot venstre, altså har de den kuttende siden på venstre.

 

Når det kommer til å faktisk slipe dem er det en del ting som er viktig å forstå:

Skjæret må selvsagt ha klaring fra alle sider bortsett fra kuttsiden slik at skjæret faktisk kan føres inn i materialet uten at noe annet enn kuttsiden treffer arbeidsstykket. Disse formene kan være komplisert å slipe siden man må til tider holde styr på 3 vinkler samtidig.

Det er egentlig ingen fasit på hvilken rekkefølge disse flatene bør slipes i, men som hovedregel kan vi si at:

  • Endeklaringen slipes først. Dette er første del av spissvinkelen: endeklaringen og endeklaringsvinkelen, som slipes samtidig:

Disse to vinklene holdes samtidig. Stålet føres rundt i sirkel mens det holdes stødig til hele den slipte flaten er uniform. Stålet kan også presses inn i steinen og holdes der, men vær obs på at endeklaringen da vil få en slak kurve som er lik radien til slipesteinen og vil ikke bli like sterk.

PROTIP: Det er en fordel at slipemerkene går langs med dreieretningen og ikke lager "fartsdumper" for sponet eller arbeidstykket.

Resultat:

  • Deretter slipes andre del av spissvinkelen og første del av eggvinkelen; klaringsvinkelen og innstillingsvinkelen.

Jeg pleier å holde hele stålet litt på skrå sett forfra mot slipesteinen, vanligvis i samme vinkel som endeklaringen. Ikke egentlig nødvendig, men det gjør slipingen på klaringsvinkelen parallell med endeklaringen, som jeg liker.

PROTIP: Spissere tupp (spissvinkel) vil tåle mindre og gi grovere overflate, spesielt uten neseradius, men kan være nødvendig for å bl.a. lage skarpe innvendige hjørner.

Resultat:

  • Så slipes andre del av eggvinkelen; sponvinkelen og hellingsvinkelen. Denne slipes ofte også på skrå på samme måte som over slik at slipingen blir parallell med endeklaringsvinkelen.

PROTIP: Skarpere sponvinkel og hellingsvinkel vil stort sett føre til en mer 'skjærende' operasjon i stedet for en 'rivende' bevegelse, som vil gi finere overflate. (Kjølevæske vil også drastisk øke overflatefinheten fordi det bl. a. skyller vekk mikro-spon som riper opp overflaten.)

Resultat:

  • Etter dette gjenstår kun å slipe eller hone inn neseradien:

Et grunnleggende og enkelt dreieskjær.

PROTIP: En enkel sponbryter er også å anbefale: En liten grop på tvers av sponvinkelen eller hellingsvinkelen vil øke den effektive eggvinkelen og bidra til at sponet krøller seg og bryter av uten å bli for langt, men denne kan også begrense bruken til skjæret. Sponbryteren burde bli trangere jo lenger vekk fra skjærpunktet den går.

Det kan også lønne seg (for den siste prikken over i'en) å hone eggen med en slipesten eller lignende for en knivskarp egg. Hvis DU skjærer deg på den kan du vedde på at den vil skjære stålet som smør. 

 

 

Hardmetall

Hardmetall er egentlig ikke et metall, det er keramisk bundet wolfram-karbid. Karbider er stoffer der karbon binder seg med andre elementer i veldig strukturerte og solide former. Hardmetall blir ofte omtalt kun som "karbid", men det er teknisk sett en forenkling av "cemented tungsten carbide" ettersom "karbid" som sagt er et fellesbegrep for flere andre materialer som f.eks. titankarbid og tantalkarbid som også brukes til å lage dreieskjær.

Wolfram-karbid (WC) er et veldig hardt materiale, nesten like hardt som diamant, men det er vanskelig å forme. Hardmetall-verktøy er derfor wolfram-karbid blandet med et bindemiddel som sammen sintres, som er en prosess der materialet presses sammen og varmes ved høy temperatur, men uten at det blir flytende. Det lages derfor mange små granuler som pakkes tett sammen og binder seg sammen med hverandre ved hjelp av et middel, vanligvis kobolt.

Denne prosessen smelter det delvis og gjør at det binder seg godt i veldig sterke formasjoner. Derav "cemented".

De tre hovedstadiene ved sintering.

Andre materialer som brukes i produksjon av dreieskjær er bl.a. syntetisk diamant og bornitrid, men sementerte karbider er vanligst.

 

Når vi snakker om hardmetall tenker nok de fleste på utbyttbare karbidskjær (indexable carbide inserts) (høyre), men de finnes også som fastmonterbare hele karbid-biter som varm-loddes fast til en bit med hurtigstål (under.)

Z1x5uupcpEx--n.jpg

Disse verktøyholderne (brazed carbide tooling) kan være tricky å lage så de fåes kjøpt i ISO standarder:

Noen av disse fåes også i venstre og høyre konfigurasjon. Karbid-bitene brukt her har ganske enkel geometri og er relativt billige, men mer komplisert å skifte ut og er derfor ikke så veldig vanlig, spesielt ikke hos store industrielle fabrikanter.

Mer utbredt, blant både industri og hobbyister, er vendeskjær:

Disse har mange fordeler som at de:

  • Arbeider ved høyere skjærehastigheter som gjør at de kan kjøre på økt matehastighet og gjør dem godt egnet til "high speed machining" (HSM) / "high velocity machining" (HVM).
  • Har relativt lang levetid, kombinert med at de kan løsnes raskt og vendes eller vris til en ny kuttside på samme skjær.
  • Kan raskt byttes ut når hele skjæret er brukt opp som bidrar til mindre 'downtime' for maskinen eller firmaet.
  • Gir stort sett finere overflate rett fra maskinen enn HSS.

Men det er også ulemper:

  • De er ikke like egnet til å gjøre avbrutte kutt, som hvis man dreier over borrede hull eller lignende, karbid liker et konstant og jevnt trykk, men de tåler til gjengjeld veldig mye av det.
  • De er ikke like skarpe som HSS kan bli, som kan gjøre det utfordrende å ta kutt med svært liten kuttdybde med god overflatefinhet. Hardmetall foretrekker ofte å ta litt mer materiale av gangen.

En viktig ting med hardmetall er at man trenger en spesifikk holder til et spesifikt skjær, man kan ikke, i motsetning til HSS, bruke en hvilken som helst holder til alle skjær. Bruker man WNMG skjær må man bruke WNMG holder (f.eks. en MWLNR).

Typer skjær og hvordan de defineres er selvfølgelig en ISO standard ♥ ISO 1832:

Den første bokstaven definerer fasongen på skjæret.

Det er feil å si at en av disse definerende bokstavene er viktigst siden alle er like viktige, men... dette er den viktigste. Du får ikke bestilt noe med bare denne, men det er en start.

Disse er relativt logisk organisert der bokstaver ofte er basert på den første bokstaven i formen, sånn som H, O, P, S, T, R.

Når det kommer til alle de forskjellige variantene av grader på rombe og parallellogram er man bare nødt til å slå det opp.

I eksempelet over er formen W et såkalt 'trigon' som i bunn og grunn er tre 80° trekanter satt sammen til en likesidet trekant-form.

Den andre bokstaven representerer endeklaringen på skjæret.

Akkurat som med hurtigstål så blir skjæret svakere jo mer endeklaring det har, men det kommer ofte til på flere steder og kan jobbe på ting med større diameter (eller kutte høyere over senter).

Den største klaringen er G på 30° og den minste er N som er helt rett / flat med 0°. Disse N-skjærene har ofte endeklaringen bygget inn i holderen:

 

Bokstav nummer tre definerer toleransene til skjæret. Finere toleranser koster selvsagt mer.

Vi er enda ikke kommet til størrelsen på skjæret, det er dekket av posisjon 5 og 6, men det er viktig å oppgi toleranseklassen til skjæret. Dette er da standardisert i følge tabellen over.

Toleransene er mye av det samme, men varierer på hvilket punkt av skjæret som er mest nøyaktig (tykkelse, total størrelse, lengde til egg).

Med toleranse M ser vi at toleransene er relativt store, der total størrelse og lengde til egg er viktigst for denne toleranseklassen. Disse toleransene kan være spesielt viktig i CNC-maskiner der skjæret byttes ut og foventes å produsere like deler som det gamle skjæret uten rekaliberering.

I ANSI standarden er dette mye det samme, men oppgitt i tusendels tommer.

 

Den fjerde bokstaven representerer flere ting; festemåte og sponbryter.

Herunder er alle variasjoner av følgende muligheter: sylindrisk hull, forsenket hull (1 eller 2 sider, samt flere typer forsenkning), sponbryter (1 eller 2 sider), ikke hull, ikke sponbryter.

Skjær med endeklaring noe annet enn 0° kan vanligvis ikke vendes og har derfor ikke noen sponbryter eller forsenkning på andre siden. Skjær uten forsenket hull (kun sylindrisk) er ofte festet til holderen med en låsepinne og/eller klemme.

Nå over til det som virkelig kan frustrere og forvirre: De første to tallene i posisjon 5 bestemmer størrelsen til skjæret ved Inscribed Circle (IC) som er den største sirkelen som får plass i skjæret rundt senter uten at noen del av sirkelen stikker utenfor OG/ELLER lengden av kuttesiden (L).

Alt dette er som sagt egentlig en ANSI standard som er blitt slurpet opp av ISO, og det har jeg ikke noe problem med, det er en grei standard, men da ISO tok den i bruk var produkter allerede etablert i... ikke tusendels tommer, NEIDA, antall 1/16 tommer som går i sirkelen... og ISO valgte derfor å definere noen nye størrelser i millimeter, men også beholde disse tallene i tabellene som standard. Så selv om disse tallene egentlig burde være en metrisk verdi i millimeter, så er de ikke alltid det og det er derfor spesielt viktig at denne verdien slås opp.

Så i eksempelet over, der den innskrevne sirkelen i skjæret skal være en 06 så vil det si 6/16", som er 9,525 mm.

Kan vi aldri få ha en logisk og uniform standard? Man mister litt motet...

Det er en morsom historie angående hvordan Amerika nesten gikk over til metrisk da det enda var en ung nasjon. I 1793 fant regjeringen av de nylig forente stater ut at de trengte et nytt standardisert målestystem ettersom statene fremdeles var relativt fragmentert og brukte forskjellige systemer som gjorde mellomstatlig handel og samarbeid vanskelig. Så på oppfordring av Thomas Jefferson, som også likte 10-tallssystemet, ble en fransk vitenskapsmann ved navn Joseph Dombey sendt over Atlanteren med en kobberstang som var ca. 3 fot lang og en kobbervekt som veide ca. 2 pund. Dette var selvsagt fysiske representasjoner og standarder av det, på den tiden under utvikling, metriske system som var 1 meter og 1 kilo respektivt. Han skulle hjelpe Jefferson å overtale kongressen til å adoptere det metriske system. Men på vei over havet møtte de på en storm som sendte skipet deres lengre sør, nærmere Karibien. Der ble han og skipet tatt til fange av britiske pirater som prøvde å kreve løsepenger for Dombey, men dessverre døde han i fangenskap. Tingene han hadde med seg var ikke av interesse for piratene så de ble auksjonert bort og etterhvert fant kiloet veien til en amerikansk landmåler ved navn Andrew Ellicott. Det gikk i arv til 1952 da etterkommere av Ellicott donerte det til det som kom til å bli NIST (National Institute of Standards and Technology). 

Det er riktignok ikke det eneste forsøket på å importere rasjonalitet til Amerika, men det kunne gjort en forskjell. We will never know.

 

Tallene i posisjon 6 representerer tykkelsen på skjæret. Mye av det samme gjelder her som i posisjon 5, men vi har mer frustrasjon i vente.

I eksempelet over er skjæret definert som 04 som MAN SKULLE TRO vil tilsi 4/16" men det blir 6,35mm som ikke stemmer med denne fabrikantens tabeller, så hva er det som skjer? Det var noens glupe idè at når det kommer til tykkelse så skal det brukes tomme-verdier, men tallet skal representere den nærmeste 1/16 tomme-verdien der det første tallet i millimeter-konverteringen blir 4.

3/16" blir 4,76mm så der har vi svaret. Kjempelogisk.

Avvik fra denne regelen desgineres med en bokstav i stedet for 0, vanligvis T.

Det er viktig å notere seg at tykkelsen måles fra bunnen av skjæret og opp til skjærepunktet/eggen.

Den siste pålagte informasjonen, posisjon 7, representerer neseradien til skjæret. Her er det heldigvis litt mer logikk inne i bildet og de to tallene i denne posisjonen er direkte overførbare til en radius i millimeter. 

I eksempelet over er tallene 08 som betyr at neseradien er 0,8mm.

Man tenke seg at det mangler et komma mellom dem; f.eks. så er 24 2,4mm radius.

For sirkulære skjær der IC = neseradius, designeres dette med 00 hvis størrelsen er konvertert fra tommer og M0 dersom verdien på størrelsen er metrisk.

Den første valgfrie bokstaven, posisjon 8, definerer hvordan eggen er formet og hvordan den er behandlet. Om den er slipt, honet, lakkert, sintret, eller på annen måte bearbeidet.

Men det representerer først og fremst formen på eggen.

Bokstaven i posisjon 9 representerer hvilken hånd eller retning skjæret er ment til å bevege seg i.

 

Posisjon 10 definerer ytterligere formen på eggen dersom skjæret ikke har en enkel tupp med neseradius:

Dette oppgis hovedsakelig dersom posisjon 7 er bokstaver, og slike skjær har vanligvis skrå og skarpe kanter (ingen hjørneradier).

Tabeller hentet fra Mitsubishi Carbide. すみません

Bløtlodding av frontsikte

Å feste et frontsikte på et løp gjøres vel kanskje mindre å mindre disse dager, ettersom jeg har inntrykk av at det foretrekkes å ikke ha noe skur og korn dersom et en ny pipe settes i, men heller bare bruke optiske siktemidler. Men det er allikevel noe vi må kunne og dette skulle bløtloddes fast.

Bløtlodding er en prosess der to eller flere materialer (vanligvis metall) sammenføyes med et fyllmateriale, der dette materialet har er lavere smeltepunkt enn delene som skal sammenføyes. Dette fyllmaterialet er som oftest loddetinn. Bløtlodding foregår hovedsakelig under 450 °C, i motsetning til varm-lodding som foregår hovedsakelig over 450 °C.

Disse formene for sammenføyning bruker kapillæreffekten til å trenge inn i alle kriker og kroker mellom delene som sammenføyes og sørger for en god og solid kobling. Kapillæreffekten gir lett-flytende væsker evnen til å stige eller følge trange og tynne passasjer tilsynelatende på tross av eksterne krefter, som f.eks. tyngdekraften.

Jeg fant et løp med et frontsikte vi hadde liggende og varmet opp frontsiktet for å ta det av slik at jeg kunne sette det på igjen. Frontsiktet og løpet ble pusset og renset med smergel. Deretter ble begge deler smurt med en blanding av loddetinn og flussmiddel. Det er selvsagt viktig at flatene passer mot hverandre, og i dette tilfellet var jeg heldig og jobbet med flater som allerede var tilpasset hverandre, men dersom nye ujusterte deler brukes må radiene tilpasses ved sliping eller maskinering. En kurant måte å tilpasse disse delene på ville vært å legge et lag med sandpapir rundt løpet og brukt det til å slipe siktet.

Delene ble varmet opp hver for seg slik at flussmiddelet/tinnet ble varmet opp og fløt utover delene. Denne prosessen kalles fortinning og klargjør delene for sammenføyning ved å forberede flatene med et rent og tynt lag med tinn. Dette laget er godt festet til sitt respektive underlag (delen) og bidrar til god termisk overføring og binding. Det er viktig at begge flatene er fortinnet ordentlig.

Frontsiktet ble så plassert på løpet etter øyemål og ett lodd ble hengt på det. 

Dette loddet har to oppgaver; det ene er å holde siktet fast og gi motstand til å flytte på seg som gjør det enklere å finjustere plasseringen, den andre er å presse det ned på løpet slik at kontaktflatene blir så korrekt som mulig når tinnet smelter.

Siktet og løpet ble varmet opp med en liten propanbrenner, løpet mer enn siktet siden det er større og dissiperer mer varme. Ekstra loddetinn fra rull ble tilført der det trengtes eller så ut som det manglet.

Løpet ble satt til å kjøle seg ned og da det var kaldt begynte jeg å rense opp overflødig loddetinn og pusse sidene blanke igjen.

Loddetinnet i sømmen ble skrapt vekk, det skal være så lite synlig tinn igjen som overhode mulig.

Det ser ikke videre vakkert ut siden delene jeg jobbet med har nok blitt utsatt for dette mange ganger før. Det er ikke dette frontsiktets første rodeo.

Men selve loddingen ble akseptabel. Varmearbeid er fascinerende og jeg lærte mye av en liten oppgave.

Kuledreier? Kule greier!

Denne uken, blandt mye annet, har jeg endelig blitt ferdig med et prosjekt jeg har holdt på med lengre enn jeg tør å innrømme. Ikke nødvendigvis fordi jeg jobber tregt, men jeg har ventet på nødvendige deler. Men nå er dingsebomsen endelig ferdig og jeg kan fortelle litt om den.

Jeg har laget en kuledreier! Det er et verktøy for å dreie sfærer i dreiebenken.

Jeg startet opprinnelig med å lage den for å lage en hevarmskule:

Bolt-n.jpg

Med tanke på hvor lang tid jeg har brukt på den hadde det definitivt vært mer effektivt å bare lage hevarmen på den gamle måten med frihånds-dreing og fil, men jeg har lært utrolig mye i løpet av produksjonen og verktøyet ble ypperlig som vi får se senere.

Verktøyet består av to store sirkulære deler som roterer på hverandre, sammenknyttet med en M12 bolt med forsenkningshode. Bolten har en sikringsmutter under, inni basen, for å sørge for at den ikke løsner under bruk.

På den øvre delen av basen sitter dreieskjæret i verktøytårnet. Skjærene er festet til en settherdet ståldel som sørger for stabilitet og mothold for skjæret når det møter arbeidsstykket. Denne er så skrudd i verktøytårnet. Skjærene er TCMT 110204 festet med M2,5 torx insert-skruer. Disse spesifikke skruene var hovedsaklig det jeg måtte vente en stund på før jeg kunne få tatt i bruk verktøyet.

Mer om skjær i et fremtidig innlegg.

Verktøytårnet er festet til svalehale-sleiden med to forsenkede M8 bolter.

Sleiden kan beveges frem og tilbake i dette sporet og kan låses fast i ønsket posisjon ved å stramme de fire set-skruene som dytter på den ene sleidekanten.

Hele verktøyet festes i T-sporet i tverrsleiden på dreiebenken med disse to T-spor mutterne her:

Disse blir så strammet av to M8 bolter som er forsenket inn i basen og den øvre delen må vris til riktig posisjon for å få tilgang til boltene.

Den er altså festet slik:

Spaken bak brukes for å vri den rundt arbeidsstykket og dette skaper kuleformen.

Det eneste som nå manglet var et godt grep på denne spaken, så kronen på verket var å lage en messingkule til enden av spaken med verktøyet. På den måten har verktøyet fullført seg selv!

Her er noen videoer av den i aksjon:

Det ferdige resultatet:

 

Hevarmen

Så var den virkelige testen kommet. Å dreie stål; å lage den hevarmen som jeg i utgangspunktet lagde dette verktøyet for.

Jeg fikk en tegning på hvordan hevarmen skulle være. En klassisk hevarm har en litt dråpeformet kule, men siden jeg benyttet kuledreiern min fikk jeg lage en litt mer sfærisk hevarmskule.

Det viktigste å tenke på med dette verktøyet når man skal lage sfærer er at senter av basen, altså det punktet verktøyet roterer om, er rett under og i senter av den kulen som skal dreies. Ved å sette senter utenfor eller forbi midten av kulen kan man lage ovale former og lignende.

Verktøyet har også skjær utvendig for å lage konkave former.

For å bruke verktøyet setter man først skjæret til senter av basen. På bildet under kan man så vidt se to rissede punkter som representerer at tuppen av det innerste skjæret er i senter av basen. Dette er en av de få pirketingene jeg gjerne skulle funnet en finere løsning for, kanskje lodde fast en bit av en linjal, eller på en eller annen måte gravere inn en millimeter-skala, men det er ikke nødvendig og funker helt fint uten.

Deretter kjøres verktøyet inntil arbeidsstykket til det så vidt møtes, og den digitale avleseren på dreiebenken nulles. Det er her viktig at vektøyet står mer eller mindre 90° på arbeidsstykket. Når avleseren er nullet kan tverrsleiden kjøres inn radien av arbeidsstykket (eller diameteren om avleseren er satt til diameter-modus, som de vanligvis er) mens vektøyet blir presset mot arbeidsstykket og da blir dyttet bakover i sleiden og vil innta den nøyaktige radius som arbeidsstykket har. Det er her selvsagt viktig at arbeidsstykket er dreiet ned til ønsket radius på kulen på forhånd.

Verktøyet føres tilbake ut fra arbeidsstykket og låses fast. Det vil da være kalibrert til korrekt radius.

For å begynne å dreie kulen settes en av aksene, X (radial / diameter) eller Z (aksial / lengde) til null, det spiller liten rolle hvilken.

Deretter avanseres kuttet med den andre aksen mens man roterer verktøyet. Etterhvert som man nærmer seg nullpunket for begge akser vil en kule eller halvkule fremarte seg. 

Deretter gjenstod det litt dreiing for å tynne ned selve armen og litt lett filing og pussing.

Den skulle også varmbøyes ca. 30°. Her brukte jeg nok litt for direkte og hard varme og litt mye oksygen i blandingen med acetylenen for det ble brent opp litt stål i bøyepunktet.

Det var ganske mye gods å varme opp, men det gikk nå til slutt og skadene er ikke noe litt smergel ikke kan fikse.

All done! Denne oppgaven tok både et halvt år og én time. Snodig det. Men verktøyet fungerte nydelig og jeg har lært mye av å lage det og hevarmen i seg selv ble ypperlig.

Tilvirkning av toarmet bladfjær

Etter all den fysikken jeg nettopp kjempet meg gjennom kan vi ta alt det og kaste det til siden fordi denne obligatoriske oppgaven ikke krever noe av det. Jeg skulle lage en kopi av en fjær vi hadde og så lenge materialet er det samme og bearbeidingen nogenlunde lik burde resultatet bli korrekt.

En toarmet bladfjær er som navnet tilsier et stykke fjærstål som bøyer seg, sammensatt av to armer. Fordelen med bladfjærer er at de kan ha former som egner seg godt i våpen og andre steder hvor man trenger retningsbestemte krefter og det ikke er plass til en kompresjonsfjær. 

I disse spesifikke bladfjærene som har seksjoner som fjærer mot hverandre mellom et felles punkt er det lengden på armene og tykkelsen på materialet som bestemmer fjæringkraften. De er ikke laget av sylindrisk tråd og kan ha et relativt stort tverrsnitt i forhold til tradisjonelle fjærer og kan derfor bære mye last, men de kan i likhet med heliksfjærer ikke sprike alt for mye ettersom det vil føre til at fjærens solide posisjon (full kompresjon) vil overstige materialets plastiske grense.

Fjæren jeg skulle lage var en slagfjær (fjæren som driver slagsystemet) til en Sauer mod. 8 sideligger.

Jeg begynte med å kappe et passende stykke fjærstål, langt nok til begge armene, og bøyde det. I dette tilfellet tror jeg det ble brukt Nablo 1248 Fjærstål. Ståltyper og destigneringer er et kapittel for seg selv, men dette tallet kalles Engineering Number (EN) og det første tallet indikerer legeringstypen: 1XXX betyr at det er vanlig, rent karbonstål. X2XX betyr at stålet er tilført svovel og fosfor for å gjøre det lettere å maskinere. De to siste XX48 betyr at stålet inneholder 0,48% karbon, typisk for et mildt fjærstål.

Jeg bøyde det ved å varme opp midten med oxy-acetylen brenneren og hamre den flatt sammen. Det er her viktig å passe på at man brenner med en ren flamme, for mye acetylen kan tilføre karbon i stålet og gjøre bøyepunktet sprøere, for mye oksygen kan oksidere stålet slik at det blir spist opp. Men det er et tema for en annen gang.

Deretter satte jeg opp den bøyde biten med fjærstål i fresen og med et hardmetallskjær freste jeg ned tykkelsen på fjæren ned til ca 0,5mm over den eksakte tykkelsen. Resten kunne jeg ta med fil senere, bedre å ha litt ekstra å jobbe med enn litt for lite, spesielt siden jeg måtte rense opp den andre siden også, som jeg også gjorde i fresen, men kun et veldig lett kutt.

Jeg renset opp alle de tilgjengelige sidene etter varmebehandlingen som også hadde etterlatt glødeskall i bøyepunktet. Jeg begynte nå å file fjæren til formen etter modellen vi skulle kopiere. Men før jeg gjorde det glødet jeg ut biten slik at filingen skulle gå lettere.

Når vi varmer opp stålet til det gløder og det kjøler seg ned igjen relativt raskt (ligge i romtemperatur) så herder det littegrann og dette førte til at stålet i bøyepunktet er litt mer motstandsdyktig ovenfor filen enn resten av fjæren. Dette gjør det problematisk å file siden filen ikke tar like mye over det hele og vil innføre bølger og ujevnheter i fjæren. Ved å 'gløde ut' stålet avslapper vi det tilbake til sin mykere tilstand som gjør det mye lettere å bearbeide. Å gløde ut, som på sett og vis er en lokal normalisering, gjøres ved å legge stålet i en ovn og varme det opp til ca 700°C, men dette varierer litt fra kilde til kilde og stål til stål, men ihvertfall ikke langt unna herdetemperatur (ca 800°C). Det skal i hvertfall gløde som navnet tilsier.

Vi har en ovn som er programmerbar med flere stadier dersom noe skulle trenge en spesiell varmebehandling. På kontrollpanelet tilsvarer T1-T4 de fire stadiene. Man trenger ikke bruke alle hvis det ikke er nødvendig. Knappene langs X-aksen er tidsinnstillinger for hvert stadie. Den første knappen styrer start-tidspunktet slik at ovnen kan settes til å vente så å så lenge før den varmer seg opp, for eksempel slik at den er varm når man kommer på skolen dagen etterpå. De etterfølgende knappene styrer hvor lang tid ovnen bruker på å varme seg opp til neste stadie og hvor lenge den skal holde seg på det stadiet. Dette kan sees på grafen som de stigende og de horisontale delene respektivt.

For å gløde ut fjæren trenges det kun å bruke ett stadie der ovnen varmer seg opp til rett temperatur og deretter slår seg av. Den håpefulle fjæren blir liggende i ovnen og ri den saktegående nedkjølingen sammen med ovnen. Den kan tas ut litt før om ønskelig, ved ca 400°C ettersom den viktigste delen av avslappingen nå er over. Hele fjæren er nå tilbake til samme mykhet over det hele.

 

Etter at grovformingen var utført var det på tide å bøye den litt igjen; få den nærmere sitt endelige utseende og gjøre det enklere å fullføre formingen.

Disse bladfjærene er formet med en lett bøy i seg for å bøye seg finere/rettere og utnytte mer av fjæringspotensialet. De har også en gradvis avtagning mot tuppene, dette for å bøye seg sammen rett og fint uten av noen del av de to armene berører hverandre før fjæren er helt komprimert.

I illustrasjonen over vil den øverste fjæren ha en bule på midten i punkt A fordi armene er rette. I forhold til påkjenningen der armene møtes er kreftene relativt små ytterst på armene, men de er lenger fra senter og har dermed lettere for å bøye seg. Siden dette ikke er kompensert for med en bøy i armene vil de bule ut.

I den midterste illustrasjonen er dette kompensert for, men dersom armene er like tykke hele veien vil de innerste delen av armene, som nå er mye nærmere hverandre i forhold til tuppene, treffe hverandre i punkt B før hele kompresjonen er fullført som vil flytte vippepunktet og føre til ujevn fjæring.

I den nederste illustrasjonen er dette også kompensert for ved å tynne tuppene av armene med en gradvis overgang mot møtepunktet. Denne formen vil gi jevn fjæring og en rett og fin lukking av fjæren; mye gods innerst som sørger for god og høy belastningsevne og graderte armer som sikrer en tilnærmet lineær sammenlukking og jevn fordeling av kreftene gjennom fjæringen.

 

Trikset for å få en fin bøy er å dytte eller dra tuppen av armen utover og varme opp hele armen for deretter å bruke brenneren ytterligere til å bøye mer spesifikt, varme opp litt mer der det trengs litt mer bøy.

I bildet under er jeg nesten ferdig med bøyingen, jeg måtte bare bøye litt ekstra inne ved roten av armen.

Jeg bøyde fjæren til litt over slik modellen var, for jeg ble fortalt at den ville 'sette seg' ca 10%, som jeg antar er at full kompresjon overstiger den elastiske grensen til materialet og etter dekompresjon vil legge seg til ro ytterst på denne grensen. Om dette er noe som hadde skjedd uavhengig av avstanden mellom armene eller et annet aspekt av designet til fjæren, eller om det gjelder kun disse fjærene fordi de er designet til å overstige den elastiske grensen er jeg ikke sikker på, men jeg la ihvertfall inn 10% overmål mellom armene. På modellen var det rundt 20mm fra tupp til tupp og jeg bøyde min dermed til å bli ca 22mm.

Dermed var det finformingen igjen. Fjæren var igjen blitt relativt hard, så nålfiler og smergel kom til god nytte her.

Deretter var det tilbake i ovnen for å herde ved 850°C i 5 min for så å bråkjøle i olje. Olje gir en litt snillere og mindre brutal herding enn vann.

Etterfulgt av en anløping ved 360°C i 20 min.

Så ble den pusset fin og blank igjen og var klar for testing og inspeksjon:

En grunnleggende belastningstest for å påse at den tålte det den skulle tåle. Dette viste også om den lukket seg rett og fint. Det gjorde den, men graderingen av armene kunne vært litt bedre.

Deretter den virkelige testen. Fjæren ble plassert i våpenet den var designet for:

Her ser vi baskylen som den sitter i. Test av slagsystem i en hagle kan gjøres ved å plassere en ti-kroning der patronen skulle hvilt og avfyrt. Dersom mynten flyr i taket er testen bestått. Som vi kan se har Kong Harald fått seg en fin liten øredobb, så fjæren bestod testen med glans.

Dette var første gangen jeg arbeidet med fjærstål på en slik måte og jeg må si det var en veldig interessant og innsiktsrik oppgave. Jeg lærte mye om både varmebehandling og ståltyper i prosessen og det å ha lagd noe som faktisk kan selges føles veldig godt.