Kuledreier? Kule greier!

Denne uken, blandt mye annet, har jeg endelig blitt ferdig med et prosjekt jeg har holdt på med lengre enn jeg tør å innrømme. Ikke nødvendigvis fordi jeg jobber tregt, men jeg har ventet på nødvendige deler. Men nå er dingsebomsen endelig ferdig og jeg kan fortelle litt om den.

Jeg har laget en kuledreier! Det er et verktøy for å dreie sfærer i dreiebenken.

Jeg startet opprinnelig med å lage den for å lage en hevarmskule:

Bolt-n.jpg

Med tanke på hvor lang tid jeg har brukt på den hadde det definitivt vært mer effektivt å bare lage hevarmen på den gamle måten med frihånds-dreing og fil, men jeg har lært utrolig mye i løpet av produksjonen og verktøyet ble ypperlig som vi får se senere.

Verktøyet består av to store sirkulære deler som roterer på hverandre, sammenknyttet med en M12 bolt med forsenkningshode. Bolten har en sikringsmutter under, inni basen, for å sørge for at den ikke løsner under bruk.

På den øvre delen av basen sitter dreieskjæret i verktøytårnet. Skjærene er festet til en settherdet ståldel som sørger for stabilitet og mothold for skjæret når det møter arbeidsstykket. Denne er så skrudd i verktøytårnet. Skjærene er TCMT 110204 festet med M2,5 torx insert-skruer. Disse spesifikke skruene var hovedsaklig det jeg måtte vente en stund på før jeg kunne få tatt i bruk verktøyet.

Mer om skjær i et fremtidig innlegg.

Verktøytårnet er festet til svalehale-sleiden med to forsenkede M8 bolter.

Sleiden kan beveges frem og tilbake i dette sporet og kan låses fast i ønsket posisjon ved å stramme de fire set-skruene som dytter på den ene sleidekanten.

Hele verktøyet festes i T-sporet i tverrsleiden på dreiebenken med disse to T-spor mutterne her:

Disse blir så strammet av to M8 bolter som er forsenket inn i basen og den øvre delen må vris til riktig posisjon for å få tilgang til boltene.

Den er altså festet slik:

Spaken bak brukes for å vri den rundt arbeidsstykket og dette skaper kuleformen.

Det eneste som nå manglet var et godt grep på denne spaken, så kronen på verket var å lage en messingkule til enden av spaken med verktøyet. På den måten har verktøyet fullført seg selv!

Her er noen videoer av den i aksjon:

Det ferdige resultatet:

 

Hevarmen

Så var den virkelige testen kommet. Å dreie stål; å lage den hevarmen som jeg i utgangspunktet lagde dette verktøyet for.

Jeg fikk en tegning på hvordan hevarmen skulle være. En klassisk hevarm har en litt dråpeformet kule, men siden jeg benyttet kuledreiern min fikk jeg lage en litt mer sfærisk hevarmskule.

Det viktigste å tenke på med dette verktøyet når man skal lage sfærer er at senter av basen, altså det punktet verktøyet roterer om, er rett under og i senter av den kulen som skal dreies. Ved å sette senter utenfor eller forbi midten av kulen kan man lage ovale former og lignende.

Verktøyet har også skjær utvendig for å lage konkave former.

For å bruke verktøyet setter man først skjæret til senter av basen. På bildet under kan man så vidt se to rissede punkter som representerer at tuppen av det innerste skjæret er i senter av basen. Dette er en av de få pirketingene jeg gjerne skulle funnet en finere løsning for, kanskje lodde fast en bit av en linjal, eller på en eller annen måte gravere inn en millimeter-skala, men det er ikke nødvendig og funker helt fint uten.

Deretter kjøres verktøyet inntil arbeidsstykket til det så vidt møtes, og den digitale avleseren på dreiebenken nulles. Det er her viktig at vektøyet står mer eller mindre 90° på arbeidsstykket. Når avleseren er nullet kan tverrsleiden kjøres inn radien av arbeidsstykket (eller diameteren om avleseren er satt til diameter-modus, som de vanligvis er) mens vektøyet blir presset mot arbeidsstykket og da blir dyttet bakover i sleiden og vil innta den nøyaktige radius som arbeidsstykket har. Det er her selvsagt viktig at arbeidsstykket er dreiet ned til ønsket radius på kulen på forhånd.

Verktøyet føres tilbake ut fra arbeidsstykket og låses fast. Det vil da være kalibrert til korrekt radius.

For å begynne å dreie kulen settes en av aksene, X (radial / diameter) eller Z (aksial / lengde) til null, det spiller liten rolle hvilken.

Deretter avanseres kuttet med den andre aksen mens man roterer verktøyet. Etterhvert som man nærmer seg nullpunket for begge akser vil en kule eller halvkule fremarte seg. 

Deretter gjenstod det litt dreiing for å tynne ned selve armen og litt lett filing og pussing.

Den skulle også varmbøyes ca. 30°. Her brukte jeg nok litt for direkte og hard varme og litt mye oksygen i blandingen med acetylenen for det ble brent opp litt stål i bøyepunktet.

Det var ganske mye gods å varme opp, men det gikk nå til slutt og skadene er ikke noe litt smergel ikke kan fikse.

All done! Denne oppgaven tok både et halvt år og én time. Snodig det. Men verktøyet fungerte nydelig og jeg har lært mye av å lage det og hevarmen i seg selv ble ypperlig.

Tilvirkning av toarmet bladfjær

Etter all den fysikken jeg nettopp kjempet meg gjennom kan vi ta alt det og kaste det til siden fordi denne obligatoriske oppgaven ikke krever noe av det. Jeg skulle lage en kopi av en fjær vi hadde og så lenge materialet er det samme og bearbeidingen nogenlunde lik burde resultatet bli korrekt.

En toarmet bladfjær er som navnet tilsier et stykke fjærstål som bøyer seg, sammensatt av to armer. Fordelen med bladfjærer er at de kan ha former som egner seg godt i våpen og andre steder hvor man trenger retningsbestemte krefter og det ikke er plass til en kompresjonsfjær. 

I disse spesifikke bladfjærene som har seksjoner som fjærer mot hverandre mellom et felles punkt er det lengden på armene og tykkelsen på materialet som bestemmer fjæringkraften. De er ikke laget av sylindrisk tråd og kan ha et relativt stort tverrsnitt i forhold til tradisjonelle fjærer og kan derfor bære mye last, men de kan i likhet med heliksfjærer ikke sprike alt for mye ettersom det vil føre til at fjærens solide posisjon (full kompresjon) vil overstige materialets plastiske grense.

Fjæren jeg skulle lage var en slagfjær (fjæren som driver slagsystemet) til en Sauer mod. 8 sideligger.

Jeg begynte med å kappe et passende stykke fjærstål, langt nok til begge armene, og bøyde det. I dette tilfellet tror jeg det ble brukt Nablo 1248 Fjærstål. Ståltyper og destigneringer er et kapittel for seg selv, men dette tallet kalles Engineering Number (EN) og det første tallet indikerer legeringstypen: 1XXX betyr at det er vanlig, rent karbonstål. X2XX betyr at stålet er tilført svovel og fosfor for å gjøre det lettere å maskinere. De to siste XX48 betyr at stålet inneholder 0,48% karbon, typisk for et mildt fjærstål.

Jeg bøyde det ved å varme opp midten med oxy-acetylen brenneren og hamre den flatt sammen. Det er her viktig å passe på at man brenner med en ren flamme, for mye acetylen kan tilføre karbon i stålet og gjøre bøyepunktet sprøere, for mye oksygen kan oksidere stålet slik at det blir spist opp. Men det er et tema for en annen gang.

Deretter satte jeg opp den bøyde biten med fjærstål i fresen og med et hardmetallskjær freste jeg ned tykkelsen på fjæren ned til ca 0,5mm over den eksakte tykkelsen. Resten kunne jeg ta med fil senere, bedre å ha litt ekstra å jobbe med enn litt for lite, spesielt siden jeg måtte rense opp den andre siden også, som jeg også gjorde i fresen, men kun et veldig lett kutt.

Jeg renset opp alle de tilgjengelige sidene etter varmebehandlingen som også hadde etterlatt glødeskall i bøyepunktet. Jeg begynte nå å file fjæren til formen etter modellen vi skulle kopiere. Men før jeg gjorde det glødet jeg ut biten slik at filingen skulle gå lettere.

Når vi varmer opp stålet til det gløder og det kjøler seg ned igjen relativt raskt (ligge i romtemperatur) så herder det littegrann og dette førte til at stålet i bøyepunktet er litt mer motstandsdyktig ovenfor filen enn resten av fjæren. Dette gjør det problematisk å file siden filen ikke tar like mye over det hele og vil innføre bølger og ujevnheter i fjæren. Ved å 'gløde ut' stålet avslapper vi det tilbake til sin mykere tilstand som gjør det mye lettere å bearbeide. Å gløde ut, som på sett og vis er en lokal normalisering, gjøres ved å legge stålet i en ovn og varme det opp til ca 700°C, men dette varierer litt fra kilde til kilde og stål til stål, men ihvertfall ikke langt unna herdetemperatur (ca 800°C). Det skal i hvertfall gløde som navnet tilsier.

Vi har en ovn som er programmerbar med flere stadier dersom noe skulle trenge en spesiell varmebehandling. På kontrollpanelet tilsvarer T1-T4 de fire stadiene. Man trenger ikke bruke alle hvis det ikke er nødvendig. Knappene langs X-aksen er tidsinnstillinger for hvert stadie. Den første knappen styrer start-tidspunktet slik at ovnen kan settes til å vente så å så lenge før den varmer seg opp, for eksempel slik at den er varm når man kommer på skolen dagen etterpå. De etterfølgende knappene styrer hvor lang tid ovnen bruker på å varme seg opp til neste stadie og hvor lenge den skal holde seg på det stadiet. Dette kan sees på grafen som de stigende og de horisontale delene respektivt.

For å gløde ut fjæren trenges det kun å bruke ett stadie der ovnen varmer seg opp til rett temperatur og deretter slår seg av. Den håpefulle fjæren blir liggende i ovnen og ri den saktegående nedkjølingen sammen med ovnen. Den kan tas ut litt før om ønskelig, ved ca 400°C ettersom den viktigste delen av avslappingen nå er over. Hele fjæren er nå tilbake til samme mykhet over det hele.

 

Etter at grovformingen var utført var det på tide å bøye den litt igjen; få den nærmere sitt endelige utseende og gjøre det enklere å fullføre formingen.

Disse bladfjærene er formet med en lett bøy i seg for å bøye seg finere/rettere og utnytte mer av fjæringspotensialet. De har også en gradvis avtagning mot tuppene, dette for å bøye seg sammen rett og fint uten av noen del av de to armene berører hverandre før fjæren er helt komprimert.

I illustrasjonen over vil den øverste fjæren ha en bule på midten i punkt A fordi armene er rette. I forhold til påkjenningen der armene møtes er kreftene relativt små ytterst på armene, men de er lenger fra senter og har dermed lettere for å bøye seg. Siden dette ikke er kompensert for med en bøy i armene vil de bule ut.

I den midterste illustrasjonen er dette kompensert for, men dersom armene er like tykke hele veien vil de innerste delen av armene, som nå er mye nærmere hverandre i forhold til tuppene, treffe hverandre i punkt B før hele kompresjonen er fullført som vil flytte vippepunktet og føre til ujevn fjæring.

I den nederste illustrasjonen er dette også kompensert for ved å tynne tuppene av armene med en gradvis overgang mot møtepunktet. Denne formen vil gi jevn fjæring og en rett og fin lukking av fjæren; mye gods innerst som sørger for god og høy belastningsevne og graderte armer som sikrer en tilnærmet lineær sammenlukking og jevn fordeling av kreftene gjennom fjæringen.

 

Trikset for å få en fin bøy er å dytte eller dra tuppen av armen utover og varme opp hele armen for deretter å bruke brenneren ytterligere til å bøye mer spesifikt, varme opp litt mer der det trengs litt mer bøy.

I bildet under er jeg nesten ferdig med bøyingen, jeg måtte bare bøye litt ekstra inne ved roten av armen.

Jeg bøyde fjæren til litt over slik modellen var, for jeg ble fortalt at den ville 'sette seg' ca 10%, som jeg antar er at full kompresjon overstiger den elastiske grensen til materialet og etter dekompresjon vil legge seg til ro ytterst på denne grensen. Om dette er noe som hadde skjedd uavhengig av avstanden mellom armene eller et annet aspekt av designet til fjæren, eller om det gjelder kun disse fjærene fordi de er designet til å overstige den elastiske grensen er jeg ikke sikker på, men jeg la ihvertfall inn 10% overmål mellom armene. På modellen var det rundt 20mm fra tupp til tupp og jeg bøyde min dermed til å bli ca 22mm.

Dermed var det finformingen igjen. Fjæren var igjen blitt relativt hard, så nålfiler og smergel kom til god nytte her.

Deretter var det tilbake i ovnen for å herde ved 850°C i 5 min for så å bråkjøle i olje. Olje gir en litt snillere og mindre brutal herding enn vann.

Etterfulgt av en anløping ved 360°C i 20 min.

Så ble den pusset fin og blank igjen og var klar for testing og inspeksjon:

En grunnleggende belastningstest for å påse at den tålte det den skulle tåle. Dette viste også om den lukket seg rett og fint. Det gjorde den, men graderingen av armene kunne vært litt bedre.

Deretter den virkelige testen. Fjæren ble plassert i våpenet den var designet for:

Her ser vi baskylen som den sitter i. Test av slagsystem i en hagle kan gjøres ved å plassere en ti-kroning der patronen skulle hvilt og avfyrt. Dersom mynten flyr i taket er testen bestått. Som vi kan se har Kong Harald fått seg en fin liten øredobb, så fjæren bestod testen med glans.

Dette var første gangen jeg arbeidet med fjærstål på en slik måte og jeg må si det var en veldig interessant og innsiktsrik oppgave. Jeg lærte mye om både varmebehandling og ståltyper i prosessen og det å ha lagd noe som faktisk kan selges føles veldig godt.

Tilvirkning av utvendig hane

Dette er ikke den hanen vi skulle lage, bare et eksempel på en typisk utvendig hane.

Utforming av deler som skal være både funksjonelle og fine å se på er en viktig del av en børsemakers kunnskap og evne. Denne obligatoriske oppgaven som er ment til å trene formsans, 3D-tenkning og verktøymestring, deriblant ikke minst filing, var en oppgave jeg hadde gruet med litt til å gjøre. Ikke fordi jeg trodde jeg ikke kom til å klare det, men jeg visste at det var en oppgave som ville innebære mye monotont og langsomt arbeid. Prosesser der man arbeider lenge for å få et lite resultat er farlig, for man kan bli fristet til å finne raskere løsninger som etter min erfaring ender opp med å skade mer enn det hjelper. Men vi mennesker liker raske resultater så det er en viktig egenskap å vite at ting skjer selv om du kanskje ikke ser det så tydelig, og at man bare må ta tiden til hjelp noen ganger.

En ting som hjalp meg veldig var å ha riktig verktøy. Det er helt uvurderlig å ha godt verktøy som er riktig for jobben. Jeg ventet med å gjøre denne oppgaven en stund delvis fordi jeg ikke hadde det verktøyet jeg følte jeg trengte.

Jeg gikk til innkjøp av noen enkle filsett fra Clas Ohlson før jeg begynte. Ingen veldig gode filer, men grove og helt kurante. Jeg hadde fra før et sett med nokså dyre nålefiler (venstre) fra Vallorbe, et sveitsisk firma som lager gode metallbearbeidings-produkter, men disse er ganske fine og tar veldig lite av gangen. Det er veldig kjekt å ha slike, men hvis jeg skulle filet hele hanen ut fra et stykke stål med bare disse filene kunne jeg holdt på en stund. Så jeg kjøpte som sagt noen billige og grovere filer. Disse viste seg å være en veldig god investering og var en fryd å jobbe med siden resultater viste seg tilfredsstillende raskt.

Jeg startet med et stykke stål som jeg boret noen hull i og sagde ut grovformen:

Deretter er trikset å forme ett plan av gangen. Først få sideprofilen til å se nogenlunde korrekt ut, for så å snu den 90° og forme front-profilen før man begynner å koble sammen disse to profilene med å runde kantene og forme den ferdige fasongen.

Man får også kjøpt halv-ferdige haner som er støpt til en grov form og som files og tilpasses våpenet:

Det er mye materiale å fjerne og fremstillingsprosessen er en reise gjennom stadig finere bearbeidingsmetoder, men til å begynne med kan man være nokså grov. På verkstedet har vi et beist av en båndsliper ved navn Kim Robert, gitt dette navnet siden det høres ut som en person som er veldig stor i kjeften og kanskje litt vanskelig å ha med å gjøre. Beklager hvis det er noen Kim Roberter der ute som føler seg truffet, vit at du blir satt pris på som en båndsliper.

DSC_0911-n.jpg

Etter litt kosing med Kim og litt filing med de groveste form-filene jeg hadde kjøpt var jeg kommer så langt:

Det er på dette tidspunkt at de litt mindre nålfiler kommer inn i rampelyset. Nålfiler er små, tynne og lange filer med ulike former og profiler som gjør det lett å arbeide med rare former og kommer til på vanskelige steder. Det er et utall forskjellige typer nålfiler, men de mest vanlige er:

Disse kommer i forskjellig 'hugning' som er grovheten til filen og jeg TROR at lavere tall er finere, men det virker ikke som det er noe standard på dette dessverre. Det de fleste nålfiler stort sett har til felles er at de har en spiss tupp, derav navnet nålfil, som gjør det enklere å file inne i steder som er vanskelig å komme til eller file veldig små områder, sprekker eller hull.

Etter en stund med grove nålfiler og deretter finere varianter nærmer vi oss noe som ligner på den modellen vi ble utdelt som vi skulle kopiere.

Her begynte jeg å pusse den med smergel, relativt grovt, for å koble sammen de organiske formene og fjerne spor fra filene. Jeg måtte mange ganger tilbake til filene for å endre på noe her å der, men det er fort gjort og lettere å se med en god finish.

Etter litt ytterligere pussing med finere smergel kan man polere den litt på et poleringshjul eller lignende, dette vil virkelig få frem filmerker og andre styggedommer som burde pusses bort.

Deretter måtte jeg file til det firkantede hullet som kobler hanen til spennstykket. Det må jo selvsagt være ikke-rundt for at hanen ikke skal rotere fritt. Her ser vi hanen min med modellen vi skulle kopiere bak, og i front er en mandrel som skal forestille den biten som hanen festes til. Det firkantede hullet skulle ha en størrelse på 6mm fra side til side.

Hanen skulle til slutt settherdes (eng: hardening, spot-hardening, case-hardening), d.v.s. at den varmes opp til den er glødende og dyppes i et pulver som smelter og tilfører karbon til overflaten av stålet slik at når det bråkjøles (eng: quenching) i vann eller olje blir overflaten knallhard mens det interne stålet blir litt mykere. Dette brukes når små områder av en del må være harde for å tåle slag eller støt og lignende, og ettersom hanens eneste funksjon er å slå på andre stålbiter er det en fordel at den ikke deformeres. Jeg ble fortalt at hullet trolig kom til å ekspandere litt etter herding så jeg lagde det litt underdimensjonert, ca. 5,9mm.

Som kylling på grillspyd:

Etter at dette var gjort herdet jeg den og vasket den:

Det er godt å være ferdig med denne oppgaven, både fordi den var til tider svært kjedelig, men også fordi jeg har lært mye jeg nå kan benytte på senere prosjekter. Jeg vegret meg for å starte, men det viste seg at det var verken så ille eller vanskelig som jeg hadde trodd, det tok bare litt tid. Jeg er svært fornøyd med produktet og føler meg en god del tryggere på å takle slike prosjekter i fremtiden, hvilket er hele poenget med skolen og disse oppgavene, men å få til et fint resultat på en slik oppgave er en fin liten motivasjonsboost.

Produksjon av nytt tennstempel

De to siste ukene har jeg fått muligheten til å prøve å lage et nytt tennstempel til en Browning Buck Mark .22 pistol, helt fra bunnen av.

Maskinering og fabrikering av nye deler er noe jeg synes er svært interessant og det å kunne bruke disse ferdighetene til å reparere ting og få de til å fungere igjen er magisk.

Her ser vi den ødelagte tennålen.

Jeg tok mål av delen og skisset opp planen min.

Noen overflødige mål her og der muligens, men det er bedre å ha for mye informasjon enn for lite. En robust kartlegging i starten sparte meg for en del tid senere.

Jeg startet med et ukjent stykke stål, som mest sannsynlig var normalt konstruksjonstål, men vil fungere helt fint til formålet.

Jeg freste ut rette referansesider og gjorde stykket klart til videre presisjonsarbeid.

Deretter freste jeg begge sider med en solid pinnefres til riktig tykkelse, 1,6mm.

Etter å ha frest den ene siden flyttet jeg fresebordet hele fresens tykkelse + 1,6mm utover og freste vekk den andre siden, som etterlot meg med en fin bit med korrekt tykkelse.

Jeg brukte så den samme pinnefresen til å skjære ut grovkonturen til biten mens den stod oppreist og festet til den solide stålbiten i stikken.

Etter det var gjort spente jeg opp stykket på nytt, nå snudd 90 grader for å frese ut hullet i midten. Dette hullet var ikke sirkulært. Det var 2,4 x 3mm så jeg kunne ikke bare bore det ut. Jeg benyttet en liten 2mm pinnefres og sørget for å kun flytte den i Y aksen (opp/ned) slik at den ikke ble utsatt for sideveis stress som kunne ført til at den knakk. Jeg senket den ned gjennom stykket flere ganger til formen til hullet så riktig ut. Hullet er avlangt for å tillate tennålen å bevege seg fritt på tross av rullesplinten som holder tennålen på plass, men må ikke hindre tennålen i å overføre slaget fra hammeren til patronen.

Da det var gjort spente jeg stykket opp tilbake i oppreist posisjon og kuttet av biten med et kutteblad.

Under ser vi delen og den gamle ødelagte biten som den skal erstatte.

Herfra og utover var det stort sett håndarbeid med filing, sliping og pussing før det siste steget kunne utføres.

Nå begynner det å ligne på noe.

Etter grovfilingen fulgte pussing med fint smergel (600) for å gi delen en bedre og finere overflate og fjerne de siste merkene etter maskineringen og filingen.

Etter litt finpussing ble den siste polishen gjort med fin pussemaskin.

Dette bildet ser jo nesten profesjonelt ut!

Etter mye inn og ut av pistolen for å gjøre siste tilpassinger og sørge for at delen opererer som den skal, var jeg tilfreds med formen og alle klaringene og toleransene.

Nå følger det siste steget, herding og anløping som jeg fikk hjelp med av en av mine mentorer.

Her varmes biten opp til den er rødglødende og dyppes i et pulver som inneholder karbon og smelter det slik at stålet trekker til seg mer karbon.

Herding gjøres for å endre mange ulike egenskaper med metaller som strekkfasthet, hardhet, osv.

Hardheten til metallet kan måles med Rockwell-skalaen og viser hvor motstandsdyktig metaller er mot plastisk deformasjon.

Når metallet herdes skal det raskt avkjøles ved å dyppe det i vann eller olje for å "låse fast" molekylene i materialet i en sterk strukturering som gjør det anspent og knallhardt når det er nedkjølt.

Når man tilsetter mer karbon blir stålet mye hardere, men også sprøere og kan lett knekke. Derfor må man etter herde-prosessen anløpe metaller, dvs. varme det opp til ca 200-400 grader, avhenging av ønskede egenskaper og metallet / legeringen.

Etter delen var herdet slipte jeg vekk det ru skallet for å kunne anløpe den. Det er viktig å se på delen når den anløpes siden det er ofte fargen som oppstår man bruker til å anløpe ting og da må biten være ren og blank med en fin overflate.

Anløping gjøres for å slippe opp litt av stresset i metallet som oppstår ved herding. Dette gjør det mer bøyelig og mindre utsatt for å knekke eller sprekke, samtidig som det opprettholder store deler hardheten fra herdingen. Pluss at det får helt nydelige farger.

Vakkert!

Sannhetens øyeblikk. Fungerer den?

Jada! Avfyrte trygt og pålitelig.

Dette var et fint prosjekt for meg siden det hadde mye rom for feil. Dersom jeg gjorde noe galt var det kun en liten bit stål som ble tapt og ikke en enestående våpendel som var ødelagt for alltid. Det vil så klart ikke være sånn i fremtiden, men for øyeblikket setter jeg pris på bare å få kunne lære tips, triks og teknikker med rom for å feile. Erfaring er den beste lærer, men jeg vil helst ikke mestre noe ved å øve meg på andres eiendeler, for øyeblikket.