Justering av avtrekk på flintlås

Det er en stund siden siste innlegg her, men jeg har vært i en periode med mye endringer; jeg har flyttet og begynt i ny jobb. Loggen fortsetter, dog med et lavere tempo. Jeg har noen interessante innlegg kommende etterhvert, men de tar tid å skrive. Nok om det.

Jeg fikk anledning til å jobbe med et pekuliært våpen nylig; en 1700-talls flintlås pistol! For de som ikke vet hva det er, er flintlås et begrep som omfatter mange ulike våpen som benytter en avfyringsmekanisme der flintstein brukes for å antenne kruttladningen. Oppfunnet ca. 1600 — en etterkommer av snapplåsen og hjullåsen — og benyttet i stor grad frem til tidlig 1800 da perkusjonslåsen gjorde sitt inntog.

Brukt hovedsakelig på musketter og andre glattløpede munnladere, som denne, naturligvis kortere, pistolen. Tidlig kruttvåpenteknologi gikk ut på å utvikle raskere, enklere og mer pålitelige måter å antenne en kruttladning utenfor våpenets kammer, som så brant som en lunte inn i våpenet og antente hovedladningen. I motsetning til perkusjonslåsen, som var det første store steget vekk fra denne måten å antenne ladningen på, var flintlåsen relativt treg i funksjonen. Med tanke på at kruttet skulle ta fyr og brenne inn i kammeret så kunne dette under dårlige forhold ta opp til ett sekund mellom avtrekk og avfyring, men på en godt laget flintlås kunne denne forsinkelsen være umerkelig.


Litt krutt helles i fengpannen og det fjærbelastede fengstålet lukkes over for å holde kruttet på plass og beskyttet fra vær og vind. Når avtrekkeren trekkes slippes hanen, som har en bit med flint låst fast i en tvinge-lignende anordning, og slår mot fengstålet slik at det åpner seg og samtidig produserer gnister som blir rettet mot kruttet i pannen. Dette antenner og brenner inn til hovedladningen gjennom et hull i siden av kammeret.

Problemet med denne spesifikke pistolen var at den ikke avfyrte; man kunne spenne hanen bakover, men et trekk i pang-spaken førte ikke til hanefall.

Det kan ha ymse forklaringer, f.eks. at overføringen fra avtrekker til avtrekkerhake er ødelagt, eller at inngrepsflatene er slitt eller ødelagt og henger seg opp. Det var sistnevnte som var problemet her.

Ikke avbildet her er slagfjæren som er en bladfjær som ligger langsmed platen og presser ned på utstikkeren fra spennstykket — som jeg også lærte heter “studdel“. Norske navn på våpendeler er så søte.

Det er to hakk på studdelen, det første er halvspenn og er formet mer som en krok slik at det skal være umulig å trekke av når avtrekkerhaken er i inngrep med denne. Denne posisjonen brukes når våpenet skal lades og hanen må fjernes fra kruttpannen for fylle på krutt. Den andre er inngrepsflaten for avtrekkerhaken og er den som haken trekkes ut av for å avfyre våpenet.

Inngrepsvinkelen er viktig og bidrar mye til hvor sikkert våpenet er og hvor godt avtrekket er. Dersom vi har negativt inngrep kan slagfjæren alene ha kraft nok til å dytte avtrekkerhaken ut av inngrep og våpenet kan gå av av seg selv, også kjent som “hair trigger“, der det bare skal til at du ser hardt på avtrekkeren før det smeller. Dette er ikke ønskelig og er veldig farlig.

Nøytralt inngrep er stort sett helt akseptabelt, der spennkreftene går vinkelrett gjennom inngrepsflatene. Problemet med dette er at dersom avtrekkeren trykkes litt inn og slippes igjen vil ikke inngrepsflatene dytte hverandre på plass igjen og våpenet er nå litt mindre sikkert enn det var. Det er derfor lurt å ha en lett positiv inngrepsvinkel slik at dersom avtrekkeren trykkes inn og slippes igjen vil slagfjæren og avtrekkerhakens fjær sammen dytte inngrepet tilbake til normal posisjon. Dette vil riktignok skape et tyngre avtrekk og er grunnen til at hanen beveger seg ørlite gran bakeover ved avtrekk før den faller. På konkurransevåpen er det vanlig med et mer nøytralt inngrep, mens på militære våpen er inngrepet tungt positivt av sikkerhetsårsaker.

Inngrepsflatenes individuelle vinkel i forhold til deres respektive vippepunkt er også av betydning. Det er ønskelig å ha hanens inngrepsflate på linje med vippepunktet for å minimere hanens bevegelse i avtrekket. Avtrekkerhakens inngrepsflate bør være tangensiell hakens vippepunkt og kan justeres ved å endre vippepunktet.

Det er også viktig at inngrepsflatene matcher slik at belastningen i systemet fordeles over en flate og ikke hviler på ett punkt av avtrekkerhaken. Dette fører til voldsom slitasje og kan ødelegge tuppen av avtrekkerhaken slik at avtrekket blir ruskete og uforutsigbart. Det er også selvsagt viktig at kantene på inngrepsflatene er parallelle slik at belastningen ikke hviler på kun venstre eller kun høyre side av avtrekkerhaken.

Så hvordan fikser vi dette? Hanens inngrepsflate var ikke flat men hadde en lett konkav form og avtrekkerhaken var ikke flat og skarp.

Siden disse delene skal tåle mye last på et lite punkt og ikke deformeres er de herdet knallharde, så filing er bare å glemme. Vi må ty til abrasjon. Abrasive verktøy som diamantfiler eller steinbryner gjør susen. Det er også viktig å ha en god guide til slipingen for at flatene skal bli parallelle og flate igjen. Dette er ikke noe som gjøres for hånd uten oppspenning. En herdet stikke som tåler det verktøyet vi vil gni over den er nødvendig.

Delene settes i mekanismen og en inngrepsvinkel observeres eller bestemmes og på best mulig måte tegnes eller på annet vis lages for å se vinkelen vi skal påføre delen når den står i stikken. Deretter slipes flaten parallelt med toppen på stikken. Her er det viktig å la verktøyet gjøre jobben og ikke påføre for mye trykk. Det finnes andre måter å gjøre dette på, det viktigste er bare at vinkelen holdes konsekvent.

Når det er sagt så er ikke flintlåsmekaniskmer fra sent 1700 tall høyden av mekanisk presisjon, så det var ikke mye som skulle til for å få den til å fungere igjen, men det var interessant å dissekere den.

Krag-Jørgensen kammer-ende (links trapesgjenger!?)

I det siste har jeg blant annet jobbet med å lage en bit av et Krag-Jørgensen løp. Det skal simulere kammer-enden av et Krag-løp for å øve på de diverse finurlighetene som omfatter Kragen og det er god trening i prosesser man ikke gjør så ofte.

Krag løpet er spesielt på mange måter, som gjør det utfordrende å lage det. For det første er gjengene linksgjenget trapesgjenger. Man kan undres om hvorfor. Trapesgjenger er sterke, og det sies at dette var noe Steyr ville ha da de lagde dem. Linksgjengene kan være begrunnet med at dette var en enklere måte å maskinere gjengene på med det utstyret de hadde eller noe i den duren, men det er vanskelig å si med sikkerhet hvorfor noen av disse særegne trekkene ble brukt. Men våpenet ble oppfunnet på en tid da det var hurtig utvikling i feltet og lite var standardisert som det er i dag. Tidlige Kongsberg-produserte Krager hadde firkantgjenger.

For det andre har løpet et frest og filt spor som løfter utdrageren vekk fra patronen slik at patronen ikke skal kunne gi den et støt bakover og oppover som kan gjøre at den lange utdrageren (2 på bildet under) fyker oppover og knekker. At systemet i det hele tatt krever en slik løsning er bare et bevis på et dårlig system spør du meg, men det er nå engang sånn. 

Så, hvordan dreier man trapesgjenger? Dette var det første jeg måtte takle. I bunn og grunn gjøres dette ikke noe annerledes enn vanlige gjenger, men det er et par viktige momenter å ta hensyn til.

Trapesgjenger er i stor grad, mye større grad enn vanlige 60° gjenger, avhengig av et godt og riktig profilskjær. Tykkelsen på skjæret varierer med stigningen og hver stigning trenger et dedikert skjær. Man kan ikke som med 60° gjenger bruke det samme verktøyet på så og si alle stigninger. Det vil si, man kan, men det krever at man gjenger med toppsleiden i en 90° posisjon og øker bredden på kuttet med den; det er ikke "korrekt" måte å gjenge på, men det kan gjøres.

500px-Acme_thread.svg.png

Amerikanske trapesgjenger, også kalt Acme-gjenger, har en total profilvinkel på 29° og altså en flankevinkel på 14,5°. Høyden på gjengene er halvparten av stigningen.

Men Kragens trapesgjenger er ikke 29°, de er 30°. Dette er hovedsakelig den eneste forskjellen på Acme-gjenger og metriske trapesgjenger. 

trapezoidal_threads-n2.png

I atter et fåfengt utbrudd over blanding av standarder og enheter må jeg forbanne de som tenkte det var en god idé å oppgi metriske trapesgjenger med en stigning i tommer. Løpet skal ha 12 gjenger per tomme; 25,4/12 = 2,116, altså er stigningen litt over 2mm...

... men gjengeprofilen bruker metrisk 30° trapesform som skulle tilsi at stigningen ville vært et rundt tall. Men neida.

Uansett, etter å ha høylytt utåndet min oppgitthet måtte jeg finne ut hvordan formskjæret skulle være. Det er vel og bra at jeg vet stigningen, som gir meg tykkelsen på skjæret ved midten av profilen (som er halvparten av stigningen), men hvor tykk skal tuppen være? Den må jo selvsagt være tynnere for å lage selve trapesformen. 

Det finnes en enkel formel, eller rettere sagt, konstant, som kan brukes for å beregne tykkelsen ved rot og tupp av trapesgjenger:

"Litt" refererer her til pasning og klaring for frigang i gjengene og varierer fra kilde til kilde, men for det meste har jeg sett 0,12 mm lagt til C og 0,24 mm lagt til D.

Men denne regelen gjelder for amerikanske Acme-gjenger og vil ikke være helt overførbar til metriske gjenger. Det er bare 1° forskjell, men det kan utgjøre litt endring. Ettersom vi øker flankevinkelen vil topptykkelsen gå mot 0P ettersom det til slutt blir et punkt og ikke en flate. På motsatt side vil dette forholde gradvis gå mot 0,5 P når vi senker flankevinkelen ettersom vi nærmer oss firkantgjenger der topptykkelsen og bunnbredden er lik. Så når vi øker flankevinkelen vil topptykkelsen synke.

Jeg kom med litt tvilsom trigonometri frem til at tuppen på skjæret mitt, uten noen hensyn til rotklaring ville være 0,644mm. Dette gir meg et forhold på 0,3043. Om dette er korrekt er jeg ikke 100% sikker på, men det fungerte greit så jeg må anta at det var noenlunde innenfor.

Med denne informasjonen kunne jeg begynne å tilvirke skjæret mitt. Jeg ville prøve å planslipe skjæret mitt så det ble så nøyaktig og bra som mulig, som en øvelse i presisjon og et forsøk for å se om det er verdt bryet. Det behøves en metode å spenne opp hurtigstålet som skal slipes slik at det kan stilles vinkler i to akser samtidig. Jeg fant en gammel gud-vet-hva som kunne strammes tilstrekkelig og stilles i to vinkler. Den måtte også være magnetisk for å sitte fast på magnetbordet til plansliperen.

Her stilles stålet inn til 15° for å slipe den første siden.

Dessverre har vi ikke tvinge som kan stilles i vinkel, og ihvertfall ikke en som kan stilles i to, så de lesere der ute som måtte grøsse/le over løsningen på bildet over etter min proklamerte higen etter presisjon vil være berettiget, men det var den løsningen jeg fant og det funket fint.

If it's stupid and it works, it ain't stupid.

Trapesgjenger har også vanligvis ganske stor heliksvinkel siden stigningen er så høy i forhold til diameteren, så dette er også en vinkel som må tas hensyn til. Flankene på gjengene er såpass rette og skjæret såpass "høyt" at det er viktig å slipe inn heliksvinkelen, samt klaringsvinkler på begge sider. 

Disse vinklene ble stilt inn og slipt, med den ene forskjell fra normale skjær at heliksvinkelen peker mot høyre og ikke mot venstre siden gjengene er linksgjenger.

30° form ferdig slipt, nå gjenstod kun å slipe spissen til korrekt tykkelse og bygge inn endeklaringen.

Da det var gjort var det på tide å prøve det nye skjæret:

Det ser lovende ut. Utfordringen her og noe som pinte meg litt var at siden gjengene er links så er den enkleste måten å lage dem på å starte innerst og mate utover, og uten et frispor gjør dette at man blir nødt til å øke kuttdybden med en gang man starter maskinen eller presse skjæret inn i stykket før man starter maskinen. Samt at man må være veldig påpasselig og ømfintlig med startspaken når man skal finne igjen begynnelsen av kuttet inne ved roten.

Det finnes bedre måter å gjøre dette på, og dersom man ville laget linksgjenger ved å mate innover må man montere skjæret opp ned og kjøre dreiebenken "bakover".

Gjengene ser korrekte ut, men passer de?

Jada. Litt langt gjengeparti, men det var ment som en øvelse/test. Jeg endte opp med å kutte ned lengden på dette partiet og bruke det videre.

Deretter ble kammeret rømmet og resten av emnet dreid ned til spec.

Det andre litt kinkige trekket ved Krag-løpet er som nevnt rampen til utdrageren. 

Her benyttet jeg litt Blue Dykem (halleluja) merkefarge for opprissing og skrudde på låsekassen for å merke opp hvor sporet måtte være. Dette sporet er ikke helt sentrert.

Igjen så kan jeg ved dette stadiet bare le av min søken etter presisjon med tanke på vinkler. Å rette noe etter stablede parallellklosser er ikke optimalt, men i mangel av noen enkel måte å vinkle etter stikka (f.eks. vinkel passbiter) funket dette helt fint.

Grovformen til sporet ble frest ut, men siden rampen har en konveks form må det files litt til slutt.

Som vi kan se på bildet under skal kurven i rampen (høyre) være slik at kanten sett ovenfra blir rett (venstre).

Etter mye testing og justering fungerte alt som det skulle. De siste to sporene ble frest i sidene og øvelsen var ferdig og ble godkjent.

En meget interessant oppgave som ga meg mulighet til å prøve meg på mer viderekommen gjenging og tilpassing.

Dreieverktøy og skjær

To av oppgavene vi har hatt er å slipe hurtigstål-skjær til dreiebenken. Vi skulle slipe et gjengeskjær og et kronestål. Begge er formverktøy som påfører en profil i arbeidsstykket:

Gjengeskjæret over ble slipt for hånd uten noen form for støtter og sjekket med et slipelære.

Skjæret er 60° slik at hver kuttside er 30° fra senterlinjen.

Klaringsvinklene er like på begge sider og skjæret har ingen innebygd vinkel siden heliksvinkelen for 60° gjenger er så liten at den kan ignoreres.

Dette verktøyet profilerer i X-retningen.

02.jpg

Kronestålet er et formverktøy på den mer tradisjonelle måten i det at den påfører en unormal form på arbeidstykket. Dette verktøyet har flere bruksmåter, men hovedbruken er å krone munningen på løp som jeg har snakket om tidligere. Verktøyet settes slik at spissen er inne i løpet og toppen av buen ligger midt på godset mellom innsiden og utsiden. Verktøyet føres så inn langs Z-aksen og påfører profilen på munningen. Dette vil da resultere i en klassisk jakt-kroning. Verktøyet kan også beveges litt frem å tilbake på X-aksen for å endre kroneprofilen. Dersom en 11° kroning ønskes kan tuppen av skjæret brukes til dette.

Weatherby-Vanguard-308Win-0006-crown.jpg

Jeg tenkte jeg skulle benytte anledningen til å skrive litt om typer skjær og bruksområder, fremstilling og gjenkjenning.

Det finnes hovedsaklig to typer dreieverktøy; hurtigstål og hardmetall.

Hurtigstål-blanks

Hardmetall-inserts

Hurtigstål

Hurtigstål er et høy-legert stål med et høyt karboninnhold som gjør det svært hardt, men sprøtt. Det tåler høyere temperaturer enn vanlig høy-karbon stål uten å miste hardheten sin, vanligvis opp til 500-600 °C. Denne motstandsdyktigheten til temperatur heter "red hardness" på engelsk. Det kalles hurtigstål fordi det er i stand til å bearbeide metall raskere og ved høyere turtall enn annet renere stål. Det er tilført stoffer som lager legeringer som forbedrer egenskapene og levetiden til verktøyet. De vanligste tilføringene er wolfram (W), molybden (Mo), krom (Cr), vanadium (V), kobolt (Co), mangan (Mn) og silikon (Si).

De to vanligste typene hurtigstål kategoriseres i to grupper: T-type og M-type, for hovedsakelig Tungsten(wolfram)-tilføringer og Molybden-tilføringer respektivt. T1 er et hovedsakelig wolfram-legert stål mens M2 er et hovedsakelig molybden-legert stål. Tallet bak bokstaven relaterer ikke nødvendigvis til noe spesielt med den ståltypen, det er først og fremst for å skille dem fra hverandre.

Det finnes uendelig mange varianter og typer hurtigstål, men de vanligste er oppført i tabellen under:

high_speed_chart.jpg

Som vi kan se på tabellen har M serien mye molybden og T serien mye wolfram, men wolfram er den klassiske og tidligere vanligste tilføringen, så M serien har mer wolfram enn T serien har molybden. Kobolt kan også tilføres for å øke levetiden og temperaturmotstanden, dette er da ofte opplyst på stålet. Vanlige benevnelser for dette er HSSE, HSS-E eller HSS-Co.

Wolfram er et tungt og sterkt, sjeldent metall, og har det høyeste smeltepunktet av alle elementer som er oppdaget, ved 3422 °C. Bedre kjent som Tungsten i engelsktalende land etter svensk tung sten, hvem skulle trodd... Wolfram brukes til mye rart, men mesteparten av verdens wolfram-utvinning går til produksjon av wolfram-karbid som brukes i hardmetall.

Molybden er et annet sterkt metall med et veldig høyt smeltepunkt ved 2623 °C. Det binder seg lett og lager harde og sterke bindinger i legeringer. Molybden opplever veldig liten termisk ekspansjon ved høye temperaturer.

Hurtigstål har stort sett en hardhet på over 60 HRC opp til ~67 HRC.

 

Sliping av hurtigstål

Hurtigstål brukes i veldig mange sponfraskillende verktøy, som bor, gjengetapper, freser, rømmere, brotsjer, etc. Men hurtigstål beregnet for bruk i dreiebenker leveres som blanke, uformede biter i mange ulike størrelser og former.

Fordelen med å bruke slike hurtigstål-blanks er at det kan slipes og formes til det formålet man behøver og kan skjærpes når det blir sløvt. 

Et typisk hurtigstål-skjær kan se slik ut:

Disse kalles hovedsakelig "single point cutters" på engelsk, ettersom det bare er ett punkt eller side som kutter, i motsetning til f.eks. et bor der det er to sider som kutter samtidig.

Det finnes mange ulike former etter hvilken operasjon som skal utføres:

Hvilket verktøy som er beregnet for hvilken retning og hva det eventuelt heter kan være litt forvirrende, men som en regel kan vi si at dersom man står mot dreiebenken er høyre-verktøy ikke verktøy som peker mot høyre eller har kuttsiden på høyre, men verktøy som er beregnet på å bevege seg fra høyre mot venstre, altså har de den kuttende siden på venstre.

 

Når det kommer til å faktisk slipe dem er det en del ting som er viktig å forstå:

Skjæret må selvsagt ha klaring fra alle sider bortsett fra kuttsiden slik at skjæret faktisk kan føres inn i materialet uten at noe annet enn kuttsiden treffer arbeidsstykket. Disse formene kan være komplisert å slipe siden man må til tider holde styr på 3 vinkler samtidig.

Det er egentlig ingen fasit på hvilken rekkefølge disse flatene bør slipes i, men som hovedregel kan vi si at:

  • Endeklaringen slipes først. Dette er første del av spissvinkelen: endeklaringen og endeklaringsvinkelen, som slipes samtidig:

Disse to vinklene holdes samtidig. Stålet føres rundt i sirkel mens det holdes stødig til hele den slipte flaten er uniform. Stålet kan også presses inn i steinen og holdes der, men vær obs på at endeklaringen da vil få en slak kurve som er lik radien til slipesteinen og vil ikke bli like sterk.

PROTIP: Det er en fordel at slipemerkene går langs med dreieretningen og ikke lager "fartsdumper" for sponet eller arbeidstykket.

Resultat:

  • Deretter slipes andre del av spissvinkelen og første del av eggvinkelen; klaringsvinkelen og innstillingsvinkelen.

Jeg pleier å holde hele stålet litt på skrå sett forfra mot slipesteinen, vanligvis i samme vinkel som endeklaringen. Ikke egentlig nødvendig, men det gjør slipingen på klaringsvinkelen parallell med endeklaringen, som jeg liker.

PROTIP: Spissere tupp (spissvinkel) vil tåle mindre og gi grovere overflate, spesielt uten neseradius, men kan være nødvendig for å bl.a. lage skarpe innvendige hjørner.

Resultat:

  • Så slipes andre del av eggvinkelen; sponvinkelen og hellingsvinkelen. Denne slipes ofte også på skrå på samme måte som over slik at slipingen blir parallell med endeklaringsvinkelen.

PROTIP: Skarpere sponvinkel og hellingsvinkel vil stort sett føre til en mer 'skjærende' operasjon i stedet for en 'rivende' bevegelse, som vil gi finere overflate. (Kjølevæske vil også drastisk øke overflatefinheten fordi det bl. a. skyller vekk mikro-spon som riper opp overflaten.)

Resultat:

  • Etter dette gjenstår kun å slipe eller hone inn neseradien:

Et grunnleggende og enkelt dreieskjær.

PROTIP: En enkel sponbryter er også å anbefale: En liten grop på tvers av sponvinkelen eller hellingsvinkelen vil øke den effektive eggvinkelen og bidra til at sponet krøller seg og bryter av uten å bli for langt, men denne kan også begrense bruken til skjæret. Sponbryteren burde bli trangere jo lenger vekk fra skjærpunktet den går.

Det kan også lønne seg (for den siste prikken over i'en) å hone eggen med en slipesten eller lignende for en knivskarp egg. Hvis DU skjærer deg på den kan du vedde på at den vil skjære stålet som smør. 

 

 

Hardmetall

Hardmetall er egentlig ikke et metall, det er keramisk bundet wolfram-karbid. Karbider er stoffer der karbon binder seg med andre elementer i veldig strukturerte og solide former. Hardmetall blir ofte omtalt kun som "karbid", men det er teknisk sett en forenkling av "cemented tungsten carbide" ettersom "karbid" som sagt er et fellesbegrep for flere andre materialer som f.eks. titankarbid og tantalkarbid som også brukes til å lage dreieskjær.

Wolfram-karbid (WC) er et veldig hardt materiale, nesten like hardt som diamant, men det er vanskelig å forme. Hardmetall-verktøy er derfor wolfram-karbid blandet med et bindemiddel som sammen sintres, som er en prosess der materialet presses sammen og varmes ved høy temperatur, men uten at det blir flytende. Det lages derfor mange små granuler som pakkes tett sammen og binder seg sammen med hverandre ved hjelp av et middel, vanligvis kobolt.

Denne prosessen smelter det delvis og gjør at det binder seg godt i veldig sterke formasjoner. Derav "cemented".

De tre hovedstadiene ved sintering.

Andre materialer som brukes i produksjon av dreieskjær er bl.a. syntetisk diamant og bornitrid, men sementerte karbider er vanligst.

 

Når vi snakker om hardmetall tenker nok de fleste på utbyttbare karbidskjær (indexable carbide inserts) (høyre), men de finnes også som fastmonterbare hele karbid-biter som varm-loddes fast til en bit med hurtigstål (under.)

Z1x5uupcpEx--n.jpg

Disse verktøyholderne (brazed carbide tooling) kan være tricky å lage så de fåes kjøpt i ISO standarder:

Noen av disse fåes også i venstre og høyre konfigurasjon. Karbid-bitene brukt her har ganske enkel geometri og er relativt billige, men mer komplisert å skifte ut og er derfor ikke så veldig vanlig, spesielt ikke hos store industrielle fabrikanter.

Mer utbredt, blant både industri og hobbyister, er vendeskjær:

Disse har mange fordeler som at de:

  • Arbeider ved høyere skjærehastigheter som gjør at de kan kjøre på økt matehastighet og gjør dem godt egnet til "high speed machining" (HSM) / "high velocity machining" (HVM).
  • Har relativt lang levetid, kombinert med at de kan løsnes raskt og vendes eller vris til en ny kuttside på samme skjær.
  • Kan raskt byttes ut når hele skjæret er brukt opp som bidrar til mindre 'downtime' for maskinen eller firmaet.
  • Gir stort sett finere overflate rett fra maskinen enn HSS.

Men det er også ulemper:

  • De er ikke like egnet til å gjøre avbrutte kutt, som hvis man dreier over borrede hull eller lignende, karbid liker et konstant og jevnt trykk, men de tåler til gjengjeld veldig mye av det.
  • De er ikke like skarpe som HSS kan bli, som kan gjøre det utfordrende å ta kutt med svært liten kuttdybde med god overflatefinhet. Hardmetall foretrekker ofte å ta litt mer materiale av gangen.

En viktig ting med hardmetall er at man trenger en spesifikk holder til et spesifikt skjær, man kan ikke, i motsetning til HSS, bruke en hvilken som helst holder til alle skjær. Bruker man WNMG skjær må man bruke WNMG holder (f.eks. en MWLNR).

Typer skjær og hvordan de defineres er selvfølgelig en ISO standard ♥ ISO 1832:

Den første bokstaven definerer fasongen på skjæret.

Det er feil å si at en av disse definerende bokstavene er viktigst siden alle er like viktige, men... dette er den viktigste. Du får ikke bestilt noe med bare denne, men det er en start.

Disse er relativt logisk organisert der bokstaver ofte er basert på den første bokstaven i formen, sånn som H, O, P, S, T, R.

Når det kommer til alle de forskjellige variantene av grader på rombe og parallellogram er man bare nødt til å slå det opp.

I eksempelet over er formen W et såkalt 'trigon' som i bunn og grunn er tre 80° trekanter satt sammen til en likesidet trekant-form.

Den andre bokstaven representerer endeklaringen på skjæret.

Akkurat som med hurtigstål så blir skjæret svakere jo mer endeklaring det har, men det kommer ofte til på flere steder og kan jobbe på ting med større diameter (eller kutte høyere over senter).

Den største klaringen er G på 30° og den minste er N som er helt rett / flat med 0°. Disse N-skjærene har ofte endeklaringen bygget inn i holderen:

 

Bokstav nummer tre definerer toleransene til skjæret. Finere toleranser koster selvsagt mer.

Vi er enda ikke kommet til størrelsen på skjæret, det er dekket av posisjon 5 og 6, men det er viktig å oppgi toleranseklassen til skjæret. Dette er da standardisert i følge tabellen over.

Toleransene er mye av det samme, men varierer på hvilket punkt av skjæret som er mest nøyaktig (tykkelse, total størrelse, lengde til egg).

Med toleranse M ser vi at toleransene er relativt store, der total størrelse og lengde til egg er viktigst for denne toleranseklassen. Disse toleransene kan være spesielt viktig i CNC-maskiner der skjæret byttes ut og foventes å produsere like deler som det gamle skjæret uten rekaliberering.

I ANSI standarden er dette mye det samme, men oppgitt i tusendels tommer.

 

Den fjerde bokstaven representerer flere ting; festemåte og sponbryter.

Herunder er alle variasjoner av følgende muligheter: sylindrisk hull, forsenket hull (1 eller 2 sider, samt flere typer forsenkning), sponbryter (1 eller 2 sider), ikke hull, ikke sponbryter.

Skjær med endeklaring noe annet enn 0° kan vanligvis ikke vendes og har derfor ikke noen sponbryter eller forsenkning på andre siden. Skjær uten forsenket hull (kun sylindrisk) er ofte festet til holderen med en låsepinne og/eller klemme.

Nå over til det som virkelig kan frustrere og forvirre: De første to tallene i posisjon 5 bestemmer størrelsen til skjæret ved Inscribed Circle (IC) som er den største sirkelen som får plass i skjæret rundt senter uten at noen del av sirkelen stikker utenfor OG/ELLER lengden av kuttesiden (L).

Alt dette er som sagt egentlig en ANSI standard som er blitt slurpet opp av ISO, og det har jeg ikke noe problem med, det er en grei standard, men da ISO tok den i bruk var produkter allerede etablert i... ikke tusendels tommer, NEIDA, antall 1/16 tommer som går i sirkelen... og ISO valgte derfor å definere noen nye størrelser i millimeter, men også beholde disse tallene i tabellene som standard. Så selv om disse tallene egentlig burde være en metrisk verdi i millimeter, så er de ikke alltid det og det er derfor spesielt viktig at denne verdien slås opp.

Så i eksempelet over, der den innskrevne sirkelen i skjæret skal være en 06 så vil det si 6/16", som er 9,525 mm.

Kan vi aldri få ha en logisk og uniform standard? Man mister litt motet...

Det er en morsom historie angående hvordan Amerika nesten gikk over til metrisk da det enda var en ung nasjon. I 1793 fant regjeringen av de nylig forente stater ut at de trengte et nytt standardisert målestystem ettersom statene fremdeles var relativt fragmentert og brukte forskjellige systemer som gjorde mellomstatlig handel og samarbeid vanskelig. Så på oppfordring av Thomas Jefferson, som også likte 10-tallssystemet, ble en fransk vitenskapsmann ved navn Joseph Dombey sendt over Atlanteren med en kobberstang som var ca. 3 fot lang og en kobbervekt som veide ca. 2 pund. Dette var selvsagt fysiske representasjoner og standarder av det, på den tiden under utvikling, metriske system som var 1 meter og 1 kilo respektivt. Han skulle hjelpe Jefferson å overtale kongressen til å adoptere det metriske system. Men på vei over havet møtte de på en storm som sendte skipet deres lengre sør, nærmere Karibien. Der ble han og skipet tatt til fange av britiske pirater som prøvde å kreve løsepenger for Dombey, men dessverre døde han i fangenskap. Tingene han hadde med seg var ikke av interesse for piratene så de ble auksjonert bort og etterhvert fant kiloet veien til en amerikansk landmåler ved navn Andrew Ellicott. Det gikk i arv til 1952 da etterkommere av Ellicott donerte det til det som kom til å bli NIST (National Institute of Standards and Technology). 

Det er riktignok ikke det eneste forsøket på å importere rasjonalitet til Amerika, men det kunne gjort en forskjell. We will never know.

 

Tallene i posisjon 6 representerer tykkelsen på skjæret. Mye av det samme gjelder her som i posisjon 5, men vi har mer frustrasjon i vente.

I eksempelet over er skjæret definert som 04 som MAN SKULLE TRO vil tilsi 4/16" men det blir 6,35mm som ikke stemmer med denne fabrikantens tabeller, så hva er det som skjer? Det var noens glupe idè at når det kommer til tykkelse så skal det brukes tomme-verdier, men tallet skal representere den nærmeste 1/16 tomme-verdien der det første tallet i millimeter-konverteringen blir 4.

3/16" blir 4,76mm så der har vi svaret. Kjempelogisk.

Avvik fra denne regelen desgineres med en bokstav i stedet for 0, vanligvis T.

Det er viktig å notere seg at tykkelsen måles fra bunnen av skjæret og opp til skjærepunktet/eggen.

Den siste pålagte informasjonen, posisjon 7, representerer neseradien til skjæret. Her er det heldigvis litt mer logikk inne i bildet og de to tallene i denne posisjonen er direkte overførbare til en radius i millimeter. 

I eksempelet over er tallene 08 som betyr at neseradien er 0,8mm.

Man tenke seg at det mangler et komma mellom dem; f.eks. så er 24 2,4mm radius.

For sirkulære skjær der IC = neseradius, designeres dette med 00 hvis størrelsen er konvertert fra tommer og M0 dersom verdien på størrelsen er metrisk.

Den første valgfrie bokstaven, posisjon 8, definerer hvordan eggen er formet og hvordan den er behandlet. Om den er slipt, honet, lakkert, sintret, eller på annen måte bearbeidet.

Men det representerer først og fremst formen på eggen.

Bokstaven i posisjon 9 representerer hvilken hånd eller retning skjæret er ment til å bevege seg i.

 

Posisjon 10 definerer ytterligere formen på eggen dersom skjæret ikke har en enkel tupp med neseradius:

Dette oppgis hovedsakelig dersom posisjon 7 er bokstaver, og slike skjær har vanligvis skrå og skarpe kanter (ingen hjørneradier).

Tabeller hentet fra Mitsubishi Carbide. すみません

Boring og gjenging av hull til siktemontasjer

Jeg har tatt en liten pause fra å jobbe med de obligatoriske oppgavene for å jobbe på et annet prosjekt som jeg har hintet til tidligere (som jeg skal fortelle mer om senere) og for å jobbe på min nye rifle som det nå er på tide å snakke litt om. Ervervstillatelsen er snart i boks og våpenet begynner å bli ferdig.

Det eneste som gjenstår er å profilere og montere løpet og lakkere et par deler.

Våpenet er basert på en gammel andre-verdenskrig Mauser Kar98k (karabin, modell 1898, kort) som var gjort om til jaktvåpen. Denne fikk jeg kjøpt relativt billig fra et dødsbo. Den var i litt sliten stand så det ene førte til det andre og jeg har nå lagt betydelige ressurser og tid inn i våpenet. Det er på ingen måte noe klassisk stil over dette, jeg har "sporterized the shit out of it", men den er nå veldig justerbar og vil gå godt.

En av de mange tingene jeg måtte fikse var hullene til siktemontasjene i låsekassen. De var hverken på linje eller i senter og er noe jeg mistenker er blitt gjort på hobby-rommet hjemme, så dette måtte ordens opp i.

Å bore og gjenge disse hullene var tilfeldigvis også en obligatorisk oppgave, så da slo jeg to fluer i en smekk!

Når man skal montere siktemidler på en rifle har man hovedsaklig to muligheter; baser eller skinne.

På bildet over ser man separate baser (øverst) og hel skinne (nederst). Baser gir litt mer plass til å komme til mekanismen om noe skulle kile seg eller man skal fylle magasinet eller man av andre grunner må pirke inni der, men man kan stort sett bare ha kikkertsikte på dem. Skinne er mer fleksibel i hva man kan sette på som siktemiddel, samt at det er mer rigid og stiver opp låsekassen. Skinne er også enklere å bygge inn MOA i, mer om det senere.

Baser kommer stort sett i Weaver-systemet, mens skinner stort sett, men ikke nødvendigvis, finnes i Picatinny-systemet.

Forskjellen mellom disse systemene er hovedsaklig avstanden mellom gropene i skinnen. Begge systemene bygger på den samme idèen og profilen er så godt som identisk. Weaver kom først (ca. 1930) og var forgjengeren til Picatinny som er en modernisert versjon og er NATO-standard: MIL-STD-1913 som ble adoptert i 1995.

Navnet Picatinny kommer fra anlegget Picatinny Arsenal i New Jersey, USA. Weaver kommer fra oppfinneren William Ralph Weaver.

wb0105-Specs2.jpg
Æsj, tusendels tommer, jeg vet, men det er en amerikansk standard og dette var det beste jeg fant.

Æsj, tusendels tommer, jeg vet, men det er en amerikansk standard og dette var det beste jeg fant.

Som vi kan se på spesifikasjonene over er distansen mellom gropene på skinnen standardisert i Picatinny-systemet og dette mønsteret strekker seg vanligvis over hele eller store deler av skinnen. Weaver bygger som sagt på de samme systemet, men avstanden mellom rillene er ikke konstant og det er ofte kun absolutt nødvendig antall riller. Stort sett vil ting laget for Weaver-systemet passe Picatinny-systemet, men ikke omvendt.

Til min rifle kjøpte jeg en Picatinny blank, d.v.s. en skinne uten hull og uten form for låsekassen. Dette måtte jeg gjøre selv og det var en lærerik prosess.

Typisk Weaver-skinne.

Både baser og skinner bruker ofte (ihvertfall på rifler) den samme avstanden mellom de to hullene foran og bak, men det er mange ulike låsekasser så avstanden mellom de fremre og bakre hullene er ikke standardisert. Derfor var det kjekt med en blank.

Bildet til venstre viser de relevante proporsjonene for å montere baser eller skinne.

Anbefalte avstander for Mauser M98 er:

A: 22mm  B: 102,4mm  C: 12,7mm

Dette varierer litt, men det er veldig vanlig slik jeg har forstått at bakre base har hullavstand 12,7mm som er 1/2 tomme og fremre hullavstand 21,8mm som er nærme 7/8 tomme, men ikke helt. 7/8 tomme er 22,2mm. Jeg brukte ihvertfall:

A: 21,8mm  B: 102,4mm  C: 12,7mm

Siden jeg lager både hullene i låsekassen og skinnen kan jeg egentlig velge fritt selv avstander og slikt, men jeg liker jo standarder, så jeg prøvde å bruke noe som var vanlig.

Først måtte jeg fjerne de gamle hullene, men hvordan fjerner man et hull? Jeg måtte sveise dem igjen. Så jeg forsenket dem lett for å komme dypere ned i hullet og fylle det bedre når jeg skulle sveise. Deretter tok jeg med meg låsekassen og en liten propanbrenner ned til sveiserommet. Jeg varmet opp materialet rundt hullet for å assistere stålet å binde seg med låsekassen. Jeg brukte en metall-limpistol, bedre kjent som MIG, og fylte hullene.

Noen av hullene var gjennomgående, så for å spare meg for litt filing, og spesielt for å beskytte gjengene i front der løpet skrus fast, så dreiet jeg en innvendig gjengebeskytter. En bit med messing med samme gjenger som pipa. Det er viktig at den er laget av et annet materiale enn det jeg skal sveise med, ellers hadde jo den også blitt sveiset fast. Man ser den såvidt i bildet under. Jeg laget også en for de bakre hullene.

Jeg festet så låsekassen min i en fikstur jeg har laget for å arbeide på M98-låsekasser. Den skrus fast med de originale skjefteskruene, samt en blokk på toppen dersom den må sitte knallhardt fast.

Disse låsekassene er kjent for å være litt kinkige å bore i ettersom de er svært harde noen steder og bløtere andre steder, samt en kombinasjon av dette lag-vis slik at man kan plutselig støte på hardt stål mens man borer gjennom, men de er stort sett hardest utenpå og mykere i kjernen. Jeg hadde nå sveiset igjen hullene og skulle bore igjennom det jeg hadde fylt på av stål, så det var relativt mykt. Men et problem oppstod da jeg skulle bore et av hullene til bakre base fordi det nye hullet mitt var delvis i den sveisede delen og delvis i den originale låsekassen, så boret begynte å vandre litt i løpet av boringen da det traff den hardere låsekassen. Jeg måtte bore opp dette hullet med gradvis økende diameter på boret for å minke belastningen på hvert bor slik at det mistet tendensen til å vandre. Jeg skulle M4 gjenger i hullene så jeg boret opp med 3,3mm bor. Å lage gjengene var også en utfordring p.g.a. det harde materialet, men med forsiktighet og litt tålmodighet gikk det til slutt, men det var nervepirrende å gjenge så hardt materiale med så skjør tapp. 

Man ser godt skillet i materialet der det er sveiset, men denne låsekassen skal ha Cerakote på seg, så det vil ikke synes.

Da var hullene i boks, fine og rette. Så var det over til skinnen.

Jeg begynte med å frese av den nederste flaten som øyensynlig har holdt biten fast da den ble laget i en CNC-maskin.

Deretter freste jeg ut sideprofilen og basene. Etter dette boret jeg hullene i baseseksjonene.

Nå fulgte den vanskelige delen. Låsekassen er rund, og skinnen må ha en radius i basene som tilsvarer radien til låsekassen. Og radien til låsekassen er ulik foran og bak. Vi hadde heller ikke kulepinnefreser i riktig dimensjon til å frese dem ut, så da måtte jeg ty til andre metoder.

Dersom man trenger å frese et langsgående spor med en konkav radius kan man ta en vanlig pinnefres eller planfres og vinkle hele fresehodet slik at man bare kutter med den ene siden som nå vil generere en radius slik:

Fra fresens normale 90° posisjon i forhold til bordet kan man vinkle den slik at en radius blir produsert. Radien vil starte slak, (stor radius) og gradvis tilnærme seg fresens radiale størrelse ved 180°.

Vi kan regne ut vinkelen på fresen for ønsket radius, og jeg forsøkte å kalkulere dette, men jeg fant ikke så mye informasjon om det, og det jeg fant fikk jeg ikke til å stemme. Under er en samling av de ressurser jeg fant:

Hovedsaklig fant jeg gamle referanser fra amerikanske lærebøker som jeg tror omhandler større planfreser og "fly-cutters" og lignende, men det virker som hovedprinsippet er: 

Men dette funker bare selvsagt når fresens radius er mindre enn ønsket radius. Det virker enkelt nok, men jeg fikk ikke helt dette til å stemme, selv om svarene jeg fikk var stort innenfor +/- 5° av det jeg faktisk trengte.

Jeg endte opp med å gjøre det i 1:1 skala og lagde en helt rund analog for fresen jeg skulle bruke, altså en 22mm dia sylinder som jeg spente opp i fresehodet og la den nedpå noen baser jeg fikk låne, som var laget for Mauser-låsekassen jeg jobbet med. Jeg stilte vinkelen på fresehodet til det så riktig ut mellom sylinderen og kontroll-basen.

Det er viktig å nevne at ved å gjøre det på denne måten oppnår man ikke en perfekt radius, men en tilnærming av en radius. Den faktiske formen på sporet blir lett ovalt siden en sirkel bikket på siden blir en oval profil (se bildene over for illustrasjon).

Det er også viktig å nevne at når man lager disse sporene i siktebaser er det fordelaktig å lage radien litt mindre enn låsekassen, isteden for litt større, for da oppnår man to kontaktpunkter, en på hver side, i stedet for at skinnen hviler på midten av radien og vil få en tendens til å vugge.

Det er i dette steget man legger inn MOA, dersom man ønsker det. MOA er forkortelse for "Minute Of Angle" og en grad delt inn i 60 "minutter", altså er 1 MOA =  1/60°.

1 MOA tilsvarer ca 30mm på 100 meter.

MOA legges inn i skinner og andre montasjer for å øke rekkevidden til våpenet med en kikkert. Når man skyter på veldig lange hold må man sikte høyere og høyere for å kompensere for kulebanen. Noen kikkerter har ikke nok justeringsmuligheter til å stille siktene rett på ved lange hold, så derfor kan man bygge inn MOA i montasjen for å øke rekkevidden.

Man bygger inn dette ved å heve den bakre delen av skinnen eller senke den fremre. Poenget er ihvertfall at at siktet skal peke rett frem når munningen er løftet litt. Den vanligste verdien her er 20 MOA som da er 0,6 meter på 100 meter, 1,2m på 200m o.s.v.

Jeg har ikke bygget inn noe MOA i skinnen min, den har altså 0 MOA, men jeg har MIL-dots i kikkerten min som gjør at jeg kan flytte siktepunktet mitt på retikkelen, i stedet for å stille trådkorset. MIL er en militær variant av MOA som bruker milliradianer i stedet for 1/60 grader. 1 MIL = ca. 90mm på 100 meter.

Det eneste som gjenstod da var å forsenke hullene til skruene. Vi hadde ikke en forsenker som var liten nok (8mm) til å gå ned i hullene mellom rillene jeg hadde frest ut, så jeg måtte slipe min egen 45° forsenker ut av et ødelagt 8mm senterbor. 

Jeg monterte delehodet på plansliperen i en 45° vinkel og roterte senterboret for å slipe riktig vinkel på det på en symmetrisk måte.

Skinnen montert! Jeg er veldig fornøyd med resultatet og gleder meg til å prøve børsa i sin helhet om ikke lenge.