Pinnefresens anatomi og hvordan velge riktig verktøy til jobben

Pinnefreser (End Mill) er den vanligste formen for skjæreverktøy til universale freser og valg av riktig pinnefres til jobben som skal gjøres kan utgjøre en stor forskjell. Det er mange dimensjoner å ta hensyn til ved innkjøp og bruk av pinnefreser.

Både materiale som skal freses og applikasjonen er kritiske i valg av fres. 

 

Kuttdiameter og kuttlengde

Fresens diameter og kuttlengde er åpenbart en vesentlig del å ta hensyn til ved valg av fres. Tykkere freser tåler mer og er mer stabile. Rigiditet og motstand mot vibrasjoner og defleksjon er viktig når det kommer til fresing og derfor bør man bruke så tykk fres som det lar seg gjøre. 

Kuttdiameteren er diameteren på den teoretiske sirkelen som dannes når verktøyet spinner rundt. Dersom fresen ikke står sentrert vil kuttdiameteren øke og fresen vil hovedsakelig skjære på én tann, hvilket er langt fra ideelt.

Total lengde (Overall Length), flutelengde (Length Of Flute) og kuttlengde (Length Of Cut) er kritiske ved bruk av lange freser. Dersom en lang fres må benyttes er det bedre å bruke en med lang hals (lang LBS, Length Below Shaft) og kortere kuttlengde siden den har tykkere kjerne/aksel over en større del av den totale lengden enn en tilsvarende lang fres med lengre kuttlengde:

Akseldiameteren har også betydning for hva slags collet eller annen montering og oppspenning som må benyttes. Ofte er akselen tykkere enn kuttdiameteren slik at det kan være problematisk å komme til dersom man skal frese dype spor eller lignende.

 

Fluter

Antall fluter spiller en stor rolle for fresens materialfjerningsevne, matehastigheter, sponevakuering, stabilitet og defleksjon. En fres med flere fluter har en tykkere kjerne som gjør den bedre i stand til å stå i mot radiale krefter og kan derfor f.eks. ta dypere/lengre kutt (stikke lenger ned i arbeidsstykket).

Men med mange fluter blir hver flute liten, altså er det liten plass til sponet som produseres ved fresingen. 

Tradisjonelt kom pinnefreser i utforminger med 2 og 4 fluter, der tommelregelen var å bruke 2 fluter på bløte metaller som aluminium, kobber, etc. og 4 fluter på hardere materialer som stål og andre harde legeringer. Grunnen til dette er at bløte metaller som aluminium er lettere å maskinere, samt at de har en tendens til å pakke seg i flutene og hindre sponevakuering dersom flutene blir for små, mens stål og lignende stor sett krever sterkere freser og lager mindre og mer håndterlig spon som lettere lar seg evakuere selv med grunne fluter.

Med flere fluter kan man også benytte høyere matehastigheter eller oppnå finere overflate med samme matehastighet ved å øke antallet fluter. I moderne produksjon der det settes fokus på hurtig maskinering er flere fluter blitt populært fordi det gir sterkere freser som kan mates fortere og fjerne mer materiale samtidig som det forlenger levetiden til verktøyet grunnet lavere stress på hver tann/flute.

Mer fres gir plass til mindre fluter.

Med nyere materialforskning og produksjon er det blitt vanlig med 3 fluter for aluminium fordi det gir en god balanse mellom god sponevakuering og høye matehastigheter.

 

Endeutforming og profil

Endeutformingen er viktig med tanke på bruken og hvordan fresen skal bevege seg, spesielt med tanke på CNC maskiner.

 

Blant "normale" pinnefreser finnes det hovedsakelig 4 typer:

  • Flat / "vanlig" pinnefres (Square / Flat Nose)
  • Avrundet / Radius (Radius Corner / Bull Nose)
  • Kule (Ball Nose)
  • Fas eller formfres (Chamfer / Formed End)

Avrundede freser, eller radiefreser, er populære der det f.eks. ikke er kritisk med 90° skarpe innvendige hjørner og brukes mye til generell grovforming. Den avrundede kanten på eggen gir en jevnere trykkfordeling på den ellers skarpe tuppen av skjærene som gjør at verktøyet tåler mer og varer lengre. 

Kulefreser er på sett og vis også radiefreser, men de ender ikke opp i en flat del, de lager halvkuler. Disse er mye brukt til forming av kompliserte deler i 3-,4- og 5-akse CNC maskiner der myke overganger mellom passeringer er nødvendig eller rett og slett der det trengs en kanal eller innvendig form med en radius.

Fasefreser eller andre formfreser brukes gjerne til avsluttende passeringer for å fase kanter eller påføre spesielle former på deler av arbeidsstykket.

Når det gjelder flate pinnefreser finnes det hovedsakelig 2 typer: senterskjærende og ikke-senterskjærende

Forskjellen sier seg selv; den ene typen skjærer i midten og kan "plunge", altså stikkes rett ned i arbeidsstykket på samme måte som et bor, den andre kan ikke og må beveges i X eller Y for å skjære.

En annen litt interessant egenskap ved moderne pinnefreser er at tennene mot formodning ikke står helt symmetrisk, men er ofte slipt inn med små variasjoner i gradene mellom dem:

I eksempelet over er det avbildet en 4-fluters flat pinnefres som man skulle tro hadde tenner med 90° intervaller, men de er litt forskjøvet frem eller tilbake slik at ingen av tennene har lik vinkel mellom seg, men vinklene blir selvsagt fortsatt 360° totalt. Dette er for å forhindre "chatter" eller vibrering i verktøyet eller arbeidsstykket ved at fresen treffer en frekvens som resonnerer med intervallene på tennene. Så disse er litt forskjøvet for å forhindre dette.

 

Heliksvinkel

Heliksvinkelen er den aksiale vinkelen på flutene som går rundt akselen. Vinkelen måles mellom senterlinjen til fresen og en rett linje som går tangentielt langs kuttsiden.

En høyere heliksvinkel (45° og oppover) øker fresens evne til å skjære istedenfor å rive og vil stort sett gi en bedre overflate, men gjør fresen skjørere og svakere. En lavere heliksvinkel (30° og lavere) gir en sterkere fres med sterkere kuttsider, men fresen lager grovere overflater siden den river mer enn den skjærer og er bedre egnet til grovbearbeiding.

En fres med middels heliksvinkel (mellom 30° - 45°) vil være godt egnet til allround bruk med akseptable resultater.

Også her lekes det med parametre for å motvirke vibrasjoner og hakking. Høy-prestasjonverktøy har ofte variable heliksvinkler på hver flute som forhindrer ytterligere resonans og bryter opp mønsteret.

 

Flere illustrasjoner hentet fra Harvey Performance

Krag-Jørgensen kammer-ende (links trapesgjenger!?)

I det siste har jeg blant annet jobbet med å lage en bit av et Krag-Jørgensen løp. Det skal simulere kammer-enden av et Krag-løp for å øve på de diverse finurlighetene som omfatter Kragen og det er god trening i prosesser man ikke gjør så ofte.

Krag løpet er spesielt på mange måter, som gjør det utfordrende å lage det. For det første er gjengene linksgjenget trapesgjenger. Man kan undres om hvorfor. Trapesgjenger er sterke, og det sies at dette var noe Steyr ville ha da de lagde dem. Linksgjengene kan være begrunnet med at dette var en enklere måte å maskinere gjengene på med det utstyret de hadde eller noe i den duren, men det er vanskelig å si med sikkerhet hvorfor noen av disse særegne trekkene ble brukt. Men våpenet ble oppfunnet på en tid da det var hurtig utvikling i feltet og lite var standardisert som det er i dag. Tidlige Kongsberg-produserte Krager hadde firkantgjenger.

For det andre har løpet et frest og filt spor som løfter utdrageren vekk fra patronen slik at patronen ikke skal kunne gi den et støt bakover og oppover som kan gjøre at den lange utdrageren (2 på bildet under) fyker oppover og knekker. At systemet i det hele tatt krever en slik løsning er bare et bevis på et dårlig system spør du meg, men det er nå engang sånn. 

Så, hvordan dreier man trapesgjenger? Dette var det første jeg måtte takle. I bunn og grunn gjøres dette ikke noe annerledes enn vanlige gjenger, men det er et par viktige momenter å ta hensyn til.

Trapesgjenger er i stor grad, mye større grad enn vanlige 60° gjenger, avhengig av et godt og riktig profilskjær. Tykkelsen på skjæret varierer med stigningen og hver stigning trenger et dedikert skjær. Man kan ikke som med 60° gjenger bruke det samme verktøyet på så og si alle stigninger. Det vil si, man kan, men det krever at man gjenger med toppsleiden i en 90° posisjon og øker bredden på kuttet med den; det er ikke "korrekt" måte å gjenge på, men det kan gjøres.

500px-Acme_thread.svg.png

Amerikanske trapesgjenger, også kalt Acme-gjenger, har en total profilvinkel på 29° og altså en flankevinkel på 14,5°. Høyden på gjengene er halvparten av stigningen.

Men Kragens trapesgjenger er ikke 29°, de er 30°. Dette er hovedsakelig den eneste forskjellen på Acme-gjenger og metriske trapesgjenger. 

trapezoidal_threads-n2.png

I atter et fåfengt utbrudd over blanding av standarder og enheter må jeg forbanne de som tenkte det var en god idé å oppgi metriske trapesgjenger med en stigning i tommer. Løpet skal ha 12 gjenger per tomme; 25,4/12 = 2,116, altså er stigningen litt over 2mm...

... men gjengeprofilen bruker metrisk 30° trapesform som skulle tilsi at stigningen ville vært et rundt tall. Men neida.

Uansett, etter å ha høylytt utåndet min oppgitthet måtte jeg finne ut hvordan formskjæret skulle være. Det er vel og bra at jeg vet stigningen, som gir meg tykkelsen på skjæret ved midten av profilen (som er halvparten av stigningen), men hvor tykk skal tuppen være? Den må jo selvsagt være tynnere for å lage selve trapesformen. 

Det finnes en enkel formel, eller rettere sagt, konstant, som kan brukes for å beregne tykkelsen ved rot og tupp av trapesgjenger:

"Litt" refererer her til pasning og klaring for frigang i gjengene og varierer fra kilde til kilde, men for det meste har jeg sett 0,12 mm lagt til C og 0,24 mm lagt til D.

Men denne regelen gjelder for amerikanske Acme-gjenger og vil ikke være helt overførbar til metriske gjenger. Det er bare 1° forskjell, men det kan utgjøre litt endring. Ettersom vi øker flankevinkelen vil topptykkelsen gå mot 0P ettersom det til slutt blir et punkt og ikke en flate. På motsatt side vil dette forholde gradvis gå mot 0,5 P når vi senker flankevinkelen ettersom vi nærmer oss firkantgjenger der topptykkelsen og bunnbredden er lik. Så når vi øker flankevinkelen vil topptykkelsen synke.

Jeg kom med litt tvilsom trigonometri frem til at tuppen på skjæret mitt, uten noen hensyn til rotklaring ville være 0,644mm. Dette gir meg et forhold på 0,3043. Om dette er korrekt er jeg ikke 100% sikker på, men det fungerte greit så jeg må anta at det var noenlunde innenfor.

Med denne informasjonen kunne jeg begynne å tilvirke skjæret mitt. Jeg ville prøve å planslipe skjæret mitt så det ble så nøyaktig og bra som mulig, som en øvelse i presisjon og et forsøk for å se om det er verdt bryet. Det behøves en metode å spenne opp hurtigstålet som skal slipes slik at det kan stilles vinkler i to akser samtidig. Jeg fant en gammel gud-vet-hva som kunne strammes tilstrekkelig og stilles i to vinkler. Den måtte også være magnetisk for å sitte fast på magnetbordet til plansliperen.

Her stilles stålet inn til 15° for å slipe den første siden.

Dessverre har vi ikke tvinge som kan stilles i vinkel, og ihvertfall ikke en som kan stilles i to, så de lesere der ute som måtte grøsse/le over løsningen på bildet over etter min proklamerte higen etter presisjon vil være berettiget, men det var den løsningen jeg fant og det funket fint.

If it's stupid and it works, it ain't stupid.

Trapesgjenger har også vanligvis ganske stor heliksvinkel siden stigningen er så høy i forhold til diameteren, så dette er også en vinkel som må tas hensyn til. Flankene på gjengene er såpass rette og skjæret såpass "høyt" at det er viktig å slipe inn heliksvinkelen, samt klaringsvinkler på begge sider. 

Disse vinklene ble stilt inn og slipt, med den ene forskjell fra normale skjær at heliksvinkelen peker mot høyre og ikke mot venstre siden gjengene er linksgjenger.

30° form ferdig slipt, nå gjenstod kun å slipe spissen til korrekt tykkelse og bygge inn endeklaringen.

Da det var gjort var det på tide å prøve det nye skjæret:

Det ser lovende ut. Utfordringen her og noe som pinte meg litt var at siden gjengene er links så er den enkleste måten å lage dem på å starte innerst og mate utover, og uten et frispor gjør dette at man blir nødt til å øke kuttdybden med en gang man starter maskinen eller presse skjæret inn i stykket før man starter maskinen. Samt at man må være veldig påpasselig og ømfintlig med startspaken når man skal finne igjen begynnelsen av kuttet inne ved roten.

Det finnes bedre måter å gjøre dette på, og dersom man ville laget linksgjenger ved å mate innover må man montere skjæret opp ned og kjøre dreiebenken "bakover".

Gjengene ser korrekte ut, men passer de?

Jada. Litt langt gjengeparti, men det var ment som en øvelse/test. Jeg endte opp med å kutte ned lengden på dette partiet og bruke det videre.

Deretter ble kammeret rømmet og resten av emnet dreid ned til spec.

Det andre litt kinkige trekket ved Krag-løpet er som nevnt rampen til utdrageren. 

Her benyttet jeg litt Blue Dykem (halleluja) merkefarge for opprissing og skrudde på låsekassen for å merke opp hvor sporet måtte være. Dette sporet er ikke helt sentrert.

Igjen så kan jeg ved dette stadiet bare le av min søken etter presisjon med tanke på vinkler. Å rette noe etter stablede parallellklosser er ikke optimalt, men i mangel av noen enkel måte å vinkle etter stikka (f.eks. vinkel passbiter) funket dette helt fint.

Grovformen til sporet ble frest ut, men siden rampen har en konveks form må det files litt til slutt.

Som vi kan se på bildet under skal kurven i rampen (høyre) være slik at kanten sett ovenfra blir rett (venstre).

Etter mye testing og justering fungerte alt som det skulle. De siste to sporene ble frest i sidene og øvelsen var ferdig og ble godkjent.

En meget interessant oppgave som ga meg mulighet til å prøve meg på mer viderekommen gjenging og tilpassing.

Nytt liv til en gammel arbeidshest

Endelig er jeg ferdig et prosjekt som er meg hjertet nært. Et prosjekt jeg har holdt på med siden skoleåret startet i fjor. Min helt egen custom Mauser 98 i .30-06 Springfield! Det ser kanskje ikke sånn ut, men den startet livet som en Karabiner 98k i den tyske hær under andre verdenskrig. En slik som er avbildet under.

Det er ikke min spesifikke rifle jeg holder i bildet over, det er faktisk den som ligger bak. Da jeg overtok den hadde den en gammel, sliten sporter-stokk på seg, men den startet som sagt livet på samme vis som den jeg holder her. Mange av disse riflene som ble liggende igjen etter krigen ble tatt i bruk i Hæren, men kort etter konvertert til .30-06 og gitt til Heimevernet da vi adopterte M1 Garand. På ett eller annet tidspunkt hadde den blitt kamret om til .308 Winchester (som noen få ble da dette ble NATO standard) som jeg ikke fant ut før jeg allerede var på skytebanen og hadde kjøpt .30-06 skudd. Ugh...

Men jeg trengte et våpen til både trening og jakt og tenkte det var en fin anledning til å ha et eget våpen jeg kunne bruke på skytedagene vi skulle ha. Prosjektet startet enkelt nok med den simple endring at jeg ville ha den i .30-06 og en ny stokk. Det ene førte til det andre og plutselig er det eneste originale igjen på børsa låsekassa og sluttstykket. Som er blitt tungt modifisert de og.

Det har vært en lang og lærerik reise med oppturer og nedturer.

 

Kamring og dreiing av nytt løp

Aller først fjernet jeg selvsagt løpet. Det satt godt fast så låsekassa måtte varmes opp for å løsne det.

Den originale løpsprofilen er fler-steget, eller trappet, og personlig er jeg ikke noen tilhenger av designet. For ikke å nevne at det ikke lar seg gjøre å kammre om et .308 løp til .30-06 uten å fjerne en del av kammer-enden siden tykkelsen på .30-06 hylsen er mindre der den treffer .308 skulderen enn .308 er, slik at det ville dannet seg en grop i kammeret her som ville gjort at hylsen ville blitt deformert/sprukket/satt seg fast ved avfyring.

Det er ingen spesiell grunn til at jeg ville ha .30-06 annet enn at jeg liker kaliberet og det en kraftig og allsidig patron. Riflen skal brukes til storviltjakt og langholdsskyting så et relativt grovt kaliber føltes riktig. Det går jo mye på følelser dette; og ikke nødvendigvis på tross av fakta.

Jeg fikk tak i en hylse som er et "adapter" som tilpasses diverse låsekasser og omgjør den til en delvis standardisert festemetode slik at våpenet blir et 'systemvåpen', altså at brukeren kan enkelt skifte løp dersom et annet kaliber kreves eller ønskes brukt i samme våpen.

Kammeret er selvsagt fortsatt i løpet, men det stikker på en måte ut av løpet og tres inn i hylsen. På bildet over er hylsen satt på feil vei for å sjekke pasning. Denne krevde litt å lage; selve pasningen vist over hadde kun 0,03 millimeter unilateral negativ toleranse.

Over kan vi se hylsen skrudd på løpet og gjenger slått i hylsen for å passe i låsekassen (under).

Deretter brotsjes (les: rømmes) kammeret med hele smæla skrudd sammen.

Etter inspeksjon og testskyting av det nye kammeret viste det seg at jeg hadde fått en rivning i metallet under prosessen som hadde etterlatt seg et dypt sår inne i kammeret og som deformerte patronen som vist på bildet under. Dette gjorde den svært vanskelig å få ut, men det gikk heldigvis med bare litt makt. Den dårlige nyheten var jo selvsagt at jeg måtte gjøre alt på nytt, inkludert å lage det presise hylse-partiet om igjen også... 

Men andre gangen gikk det knirkefritt og resultatet ble tilfredsstillende.

Under dreier jeg ned det nye, nå ferdig kammrede, løpsemnet fra Lothar Walter. I første omgang kun ren masseavvirkning for å tynne løpet.

Konusdreiing for å fullføre løpsprofilen. Her brukte jeg brille for å minimere vibrasjoner og optimalisere maskinert overflatefinhet før puss.

Løpet behøver ikke være så veldig tykt, men et tykkere løp bidrar til økt presisjon. Jeg lot løpet være ganske tykt fordi jeg vill ha høy presisjon og løpet skulle uansett flutes for å fjerne noe vekt. Den koniske profilen på løpet bidrar til et slankere og helhetlig visuelt inntrykk med tanke på perspektiv.

 

Fluting

Jeg flutet løpet, hovedsakelig for utseende, men også for å redusere vekt. Dette var stort sett en langsom og kjedelig prosess siden matehastigheten var så lav. Når ett kutt tar ca 15 min og 5 fluter på 3-4 kutt per flute... det tok tid. Men verktøyet var flunkende nytt og prosessen ny for meg så jeg tok det heller litt med ro enn å forhaste meg. Finishen på flutene ble også veldig bra.

På tross av den langsomme prosessen var det en svært interessant og lærerik prosess. I bildet over klokker jeg inn løpet slik at kuttsiden er parallell med X-aksen. Siden løpet er konisk må det spennes opp litt på skrå for at flutens tykkesle skal bli jevn. Det ble spent opp i et delehode og en senterspiss med en vinkelplate som støtte bak. En liten innretning med et spor i satt rundt løpet og ble brukt for å trekke mot vinkelplaten og holde det stramt på plass. 

Det viktigste her er at flutene blir symmetrisk, så den første fluten må stilles inn i forhold til hvordan løpet sitter i låsekassa. Jeg monterte det fast i rifla og merket opp med en av de andre fresene hvor midten/toppen av løpet var. Deretter monterte jeg det opp i oppspenningen over og brukte en høyderissemåler/rissefot får å vise midten av løpet og roterte delehodet til den rissede linjen og høyderissemåleren møttes. Jeg gjorde også noen små testkutt for å verifisere at verktøyet fulgte denne linjen. Nå skulle den første fluten teoretisk sett bli midt oppå løpet.

Jeg lagde som nevnt 5 fluter, av den enkle grunn at det gjorde at jeg slapp å flytte vinkelplaten for hver rotasjon, siden med et oddetall fluter vil løpet alltid hvile mot vinkelplaten på en ribbe og ikke på en flute. Jeg er av den tro at et partall fluter, som er fullstendig symmetrisk, vil gi et stivere løp siden den totale tykkelsen mellom ribbene blir større enn med et oddetall fluter, men det skal tydeligvis ikke utgjøre så stor forskjell.

Et annet viktig moment å tenke på er hvordan løpet er tilvirket. Hvordan det er laget, om det er varmhamret eller kaldhamret eller om riflingene er påført i etterkant med en "button" som dras gjennom pipa kan påvirke hvordan løpet reagerer på å bli flutet. Det kan hende det innfører spenninger ved å lage en hel dyp flute på en gang før man tar den neste, eller det kan gå fint, men man kan trenge å ta alle kutt av samme dybde før man øker kuttdybden for å opprettholde rettheten i pipa, men det var heldigvis ikke et problem for meg med dette løpet.

 

Låsekassen

Mye ble gjort med selve låsekassen og sluttstykket.

Mest interessant av alt er vel en idé jeg fikk av mine mentorer på XXL. Mauser-låsekassen er relativt fleksibel og svak p.g.a utsparingen til tommelen som er der for at våpenet skal kunne bli ladet med stripper-clips. Så tanken er å sveise igjen dette hullet for å stive opp kassa. Hvilket jeg gjorde. 

Jeg lagde en bit av vanlig maskinstål som passet sånn høvelig greit i hullet med litt overmål og MIGet den fast utenpå og inni. Deretter freste jeg vekk det verste og avsluttet med fil. 

Utenom det ble det tilvirket en ny picatinny-skinne som jeg har skrevet om tidligere og nye monstasjehull boret og gjenget.

Nytt avtrekk ble installert, Timney FWD med avtrekkersikring. Siden jeg nå hadde sikring på avtrekkeren ble den originale direkte sikringen på shroud'en fjernet og ny shroud ble kjøpt. Dette er riktignok litt mindre sikkert, men fortsatt sikkert nok.

Utdrageren og bolt-stoppen ble blå-anløpt og jeg monterte en ny selvdesignet hevarm.

Jeg kjøpte også Superior Shooting speedlock-system som er et tennstempel av titan eller stål og aluminium med en ny fjær i krom-silikon legering. Dette kan senke tiden fra avtrekk til skuddet går med flere millisekunder.

 

Rekylbrems

Jeg lagde min egen rekylbrems som er uthulet og plugget igjen for å fange og redirigere så mye av munninggassene som mulig.

Den fanger gassene og omdirigerer dem ut til sidene, oppover og bakover. Også ser den tøff ut.

 

Cerakote

Da alt var ferdig var det på tide å cerakote løp og låskasse, samt andre smådeler. Når det kom til løpet ville jeg ha blanke fluter, så disse ble maskert og endene av løpet plugget.

Cerakote og Durakote er en form for lakk som inneholder keramiske partikler og herder over flere dager og produserer et motstandsdyktig og slitesterkt lag. Det er viktig ved påføring at det som skal sprayes er glass-/sandblåst, avfettet og tørt. Det påføres i èn omgang med mange lette lag, mye som annen pulverlakkering.

Nydelig.

 

Stokk og bedding

I utgangspunktet hadde jeg tenkt til å lage min egen stokk i tre, men siden jeg satte på skinne på låsekassa ville det bli knotete å fylle på ammunisjon i magasinet, så jeg ville ha en løsning med uttakbare boksmagasin. Det var noen greie løsninger der ute og planen var å benytte AICS magasiner med en long-action underbeslag, men det viste seg å være en veldig vanskelig kombinasjon å finne for Mauser. Så jeg endte opp med en AA98, en glassfiber-forsterket polymer-stokk fra Archangel. Denne har mange justeringsmuligheter, er spesialtilpasset M98 og kommer med magasinløsning og et magasin. Jeg kjøpte også to ekstra magasiner, fordi hva er poenget med boksmagasinsystem med bare ett magasin?

Men selv om den kommer ferdig tilpasset var det ikke bra nok for meg. Ikke bare måtte jeg utvide løpskanalen til å passe det nye løpet mitt, jeg ville også bedde stokken. Det vil si å fylle i et epoxyharpiks i stokken for så å presse og skru fast låsekassa med dette stoffet i mellom og la det herde. Dette vil lage et eksakt avtrykk av låsekassa i stokken og den vil ligge godt og solid og vil ikke kunne røre på seg. Det vil også hindre at man drar inn spenninger i låsekassa når man skrur den i stokken som igjen vil bidra til økt presisjon.

Første steg er å rufse opp innsiden der epoxyen skal sitte. Det er kun nødvendig å bedde rundt festepunktene, dvs. rundt skruene, men det må der beddes helt opp til kanten av stokken og spesielt i rekylopptaket, vanligvis den utstikkende flaten ved den fremste skruen.

Det er viktig å lage dype og ru spor her slik at beddingen fester seg godt til stokken. Mange små ikke-parallelle kriker og kroker som limet kan flyte inn i lager et godt feste.

Deretter smøres låsekassen, skruene og alt annet som ikke skal ha lim på seg inn med f.eks. skokrem slik at limet ikke fester seg til annet enn stokken. Så blandes beddemassen som er en blanding av lim og herder, i dette tilfellet i et forhold på 1:4 herder/lim. Vi blandet her 20g lim og 5g herder. Krydre med litt svart fargepulver etter smak. Finhakk en håndfull isolasjon og ha i. Rør godt.

Man ønsker en konsistens slik at det ikke flyter og drypper av rørepinnen. Glassfiberet gir limet styrke og struktur.

Massen legges på og presses godt ned og inn i alle de tidligere nevnte kriker og kroker. En liten rygg av masse legges midt på for å hindre at det fanges luftbobler og som automatisk presses ut fra midten og sørger for en jevn spredning.

Man skrur så fast låsekassen, men ikke så hardt at de spenningene vi prøver å unngå blir bygget inn i beddingen. Så vi strammer til det stopper og så løsner opp til låsekassen ikke stiger mer.

Etter at det er herdet kan de største ansamlingene pirkes av og så kan mekanismen røskes ut av stokken.

Skruehullene kan trenge å bores opp siden det har samlet seg beddemasse i skruekanalene som kan gjøre de vanskelig å få inn skruene ordentlig.

 

Voila!

Annet tilbehør som er brukt:

  • Accu-Tac LR-10 tofot
  • Accu-Shot Mid-Range monopod
  • Vortex Viper PST 6-24x50 EBR-1 MRAD kikkertsikte
  • Daniel Defense QD sling mount
  • Magpul MS4 Dual QD GEN2 reim

Nå er jeg fornøyd og veldig glad! Jeg gleder meg til å ta den med på skytebanen og virkelig sette både den og meg på prøve.

Boring og gjenging av hull til siktemontasjer

Jeg har tatt en liten pause fra å jobbe med de obligatoriske oppgavene for å jobbe på et annet prosjekt som jeg har hintet til tidligere (som jeg skal fortelle mer om senere) og for å jobbe på min nye rifle som det nå er på tide å snakke litt om. Ervervstillatelsen er snart i boks og våpenet begynner å bli ferdig.

Det eneste som gjenstår er å profilere og montere løpet og lakkere et par deler.

Våpenet er basert på en gammel andre-verdenskrig Mauser Kar98k (karabin, modell 1898, kort) som var gjort om til jaktvåpen. Denne fikk jeg kjøpt relativt billig fra et dødsbo. Den var i litt sliten stand så det ene førte til det andre og jeg har nå lagt betydelige ressurser og tid inn i våpenet. Det er på ingen måte noe klassisk stil over dette, jeg har "sporterized the shit out of it", men den er nå veldig justerbar og vil gå godt.

En av de mange tingene jeg måtte fikse var hullene til siktemontasjene i låsekassen. De var hverken på linje eller i senter og er noe jeg mistenker er blitt gjort på hobby-rommet hjemme, så dette måtte ordens opp i.

Å bore og gjenge disse hullene var tilfeldigvis også en obligatorisk oppgave, så da slo jeg to fluer i en smekk!

Når man skal montere siktemidler på en rifle har man hovedsaklig to muligheter; baser eller skinne.

På bildet over ser man separate baser (øverst) og hel skinne (nederst). Baser gir litt mer plass til å komme til mekanismen om noe skulle kile seg eller man skal fylle magasinet eller man av andre grunner må pirke inni der, men man kan stort sett bare ha kikkertsikte på dem. Skinne er mer fleksibel i hva man kan sette på som siktemiddel, samt at det er mer rigid og stiver opp låsekassen. Skinne er også enklere å bygge inn MOA i, mer om det senere.

Baser kommer stort sett i Weaver-systemet, mens skinner stort sett, men ikke nødvendigvis, finnes i Picatinny-systemet.

Forskjellen mellom disse systemene er hovedsaklig avstanden mellom gropene i skinnen. Begge systemene bygger på den samme idèen og profilen er så godt som identisk. Weaver kom først (ca. 1930) og var forgjengeren til Picatinny som er en modernisert versjon og er NATO-standard: MIL-STD-1913 som ble adoptert i 1995.

Navnet Picatinny kommer fra anlegget Picatinny Arsenal i New Jersey, USA. Weaver kommer fra oppfinneren William Ralph Weaver.

wb0105-Specs2.jpg
Æsj, tusendels tommer, jeg vet, men det er en amerikansk standard og dette var det beste jeg fant.

Æsj, tusendels tommer, jeg vet, men det er en amerikansk standard og dette var det beste jeg fant.

Som vi kan se på spesifikasjonene over er distansen mellom gropene på skinnen standardisert i Picatinny-systemet og dette mønsteret strekker seg vanligvis over hele eller store deler av skinnen. Weaver bygger som sagt på de samme systemet, men avstanden mellom rillene er ikke konstant og det er ofte kun absolutt nødvendig antall riller. Stort sett vil ting laget for Weaver-systemet passe Picatinny-systemet, men ikke omvendt.

Til min rifle kjøpte jeg en Picatinny blank, d.v.s. en skinne uten hull og uten form for låsekassen. Dette måtte jeg gjøre selv og det var en lærerik prosess.

Typisk Weaver-skinne.

Både baser og skinner bruker ofte (ihvertfall på rifler) den samme avstanden mellom de to hullene foran og bak, men det er mange ulike låsekasser så avstanden mellom de fremre og bakre hullene er ikke standardisert. Derfor var det kjekt med en blank.

Bildet til venstre viser de relevante proporsjonene for å montere baser eller skinne.

Anbefalte avstander for Mauser M98 er:

A: 22mm  B: 102,4mm  C: 12,7mm

Dette varierer litt, men det er veldig vanlig slik jeg har forstått at bakre base har hullavstand 12,7mm som er 1/2 tomme og fremre hullavstand 21,8mm som er nærme 7/8 tomme, men ikke helt. 7/8 tomme er 22,2mm. Jeg brukte ihvertfall:

A: 21,8mm  B: 102,4mm  C: 12,7mm

Siden jeg lager både hullene i låsekassen og skinnen kan jeg egentlig velge fritt selv avstander og slikt, men jeg liker jo standarder, så jeg prøvde å bruke noe som var vanlig.

Først måtte jeg fjerne de gamle hullene, men hvordan fjerner man et hull? Jeg måtte sveise dem igjen. Så jeg forsenket dem lett for å komme dypere ned i hullet og fylle det bedre når jeg skulle sveise. Deretter tok jeg med meg låsekassen og en liten propanbrenner ned til sveiserommet. Jeg varmet opp materialet rundt hullet for å assistere stålet å binde seg med låsekassen. Jeg brukte en metall-limpistol, bedre kjent som MIG, og fylte hullene.

Noen av hullene var gjennomgående, så for å spare meg for litt filing, og spesielt for å beskytte gjengene i front der løpet skrus fast, så dreiet jeg en innvendig gjengebeskytter. En bit med messing med samme gjenger som pipa. Det er viktig at den er laget av et annet materiale enn det jeg skal sveise med, ellers hadde jo den også blitt sveiset fast. Man ser den såvidt i bildet under. Jeg laget også en for de bakre hullene.

Jeg festet så låsekassen min i en fikstur jeg har laget for å arbeide på M98-låsekasser. Den skrus fast med de originale skjefteskruene, samt en blokk på toppen dersom den må sitte knallhardt fast.

Disse låsekassene er kjent for å være litt kinkige å bore i ettersom de er svært harde noen steder og bløtere andre steder, samt en kombinasjon av dette lag-vis slik at man kan plutselig støte på hardt stål mens man borer gjennom, men de er stort sett hardest utenpå og mykere i kjernen. Jeg hadde nå sveiset igjen hullene og skulle bore igjennom det jeg hadde fylt på av stål, så det var relativt mykt. Men et problem oppstod da jeg skulle bore et av hullene til bakre base fordi det nye hullet mitt var delvis i den sveisede delen og delvis i den originale låsekassen, så boret begynte å vandre litt i løpet av boringen da det traff den hardere låsekassen. Jeg måtte bore opp dette hullet med gradvis økende diameter på boret for å minke belastningen på hvert bor slik at det mistet tendensen til å vandre. Jeg skulle M4 gjenger i hullene så jeg boret opp med 3,3mm bor. Å lage gjengene var også en utfordring p.g.a. det harde materialet, men med forsiktighet og litt tålmodighet gikk det til slutt, men det var nervepirrende å gjenge så hardt materiale med så skjør tapp. 

Man ser godt skillet i materialet der det er sveiset, men denne låsekassen skal ha Cerakote på seg, så det vil ikke synes.

Da var hullene i boks, fine og rette. Så var det over til skinnen.

Jeg begynte med å frese av den nederste flaten som øyensynlig har holdt biten fast da den ble laget i en CNC-maskin.

Deretter freste jeg ut sideprofilen og basene. Etter dette boret jeg hullene i baseseksjonene.

Nå fulgte den vanskelige delen. Låsekassen er rund, og skinnen må ha en radius i basene som tilsvarer radien til låsekassen. Og radien til låsekassen er ulik foran og bak. Vi hadde heller ikke kulepinnefreser i riktig dimensjon til å frese dem ut, så da måtte jeg ty til andre metoder.

Dersom man trenger å frese et langsgående spor med en konkav radius kan man ta en vanlig pinnefres eller planfres og vinkle hele fresehodet slik at man bare kutter med den ene siden som nå vil generere en radius slik:

Fra fresens normale 90° posisjon i forhold til bordet kan man vinkle den slik at en radius blir produsert. Radien vil starte slak, (stor radius) og gradvis tilnærme seg fresens radiale størrelse ved 180°.

Vi kan regne ut vinkelen på fresen for ønsket radius, og jeg forsøkte å kalkulere dette, men jeg fant ikke så mye informasjon om det, og det jeg fant fikk jeg ikke til å stemme. Under er en samling av de ressurser jeg fant:

Hovedsaklig fant jeg gamle referanser fra amerikanske lærebøker som jeg tror omhandler større planfreser og "fly-cutters" og lignende, men det virker som hovedprinsippet er: 

Men dette funker bare selvsagt når fresens radius er mindre enn ønsket radius. Det virker enkelt nok, men jeg fikk ikke helt dette til å stemme, selv om svarene jeg fikk var stort innenfor +/- 5° av det jeg faktisk trengte.

Jeg endte opp med å gjøre det i 1:1 skala og lagde en helt rund analog for fresen jeg skulle bruke, altså en 22mm dia sylinder som jeg spente opp i fresehodet og la den nedpå noen baser jeg fikk låne, som var laget for Mauser-låsekassen jeg jobbet med. Jeg stilte vinkelen på fresehodet til det så riktig ut mellom sylinderen og kontroll-basen.

Det er viktig å nevne at ved å gjøre det på denne måten oppnår man ikke en perfekt radius, men en tilnærming av en radius. Den faktiske formen på sporet blir lett ovalt siden en sirkel bikket på siden blir en oval profil (se bildene over for illustrasjon).

Det er også viktig å nevne at når man lager disse sporene i siktebaser er det fordelaktig å lage radien litt mindre enn låsekassen, isteden for litt større, for da oppnår man to kontaktpunkter, en på hver side, i stedet for at skinnen hviler på midten av radien og vil få en tendens til å vugge.

Det er i dette steget man legger inn MOA, dersom man ønsker det. MOA er forkortelse for "Minute Of Angle" og en grad delt inn i 60 "minutter", altså er 1 MOA =  1/60°.

1 MOA tilsvarer ca 30mm på 100 meter.

MOA legges inn i skinner og andre montasjer for å øke rekkevidden til våpenet med en kikkert. Når man skyter på veldig lange hold må man sikte høyere og høyere for å kompensere for kulebanen. Noen kikkerter har ikke nok justeringsmuligheter til å stille siktene rett på ved lange hold, så derfor kan man bygge inn MOA i montasjen for å øke rekkevidden.

Man bygger inn dette ved å heve den bakre delen av skinnen eller senke den fremre. Poenget er ihvertfall at at siktet skal peke rett frem når munningen er løftet litt. Den vanligste verdien her er 20 MOA som da er 0,6 meter på 100 meter, 1,2m på 200m o.s.v.

Jeg har ikke bygget inn noe MOA i skinnen min, den har altså 0 MOA, men jeg har MIL-dots i kikkerten min som gjør at jeg kan flytte siktepunktet mitt på retikkelen, i stedet for å stille trådkorset. MIL er en militær variant av MOA som bruker milliradianer i stedet for 1/60 grader. 1 MIL = ca. 90mm på 100 meter.

Det eneste som gjenstod da var å forsenke hullene til skruene. Vi hadde ikke en forsenker som var liten nok (8mm) til å gå ned i hullene mellom rillene jeg hadde frest ut, så jeg måtte slipe min egen 45° forsenker ut av et ødelagt 8mm senterbor. 

Jeg monterte delehodet på plansliperen i en 45° vinkel og roterte senterboret for å slipe riktig vinkel på det på en symmetrisk måte.

Skinnen montert! Jeg er veldig fornøyd med resultatet og gleder meg til å prøve børsa i sin helhet om ikke lenge.

Dreiestålholder

En av de første obligatoriske læreplan-oppgavene var å produsere en enkel dreiestålholder. Dette er hovedsaklig en freseøvelse, og det gir mening å begynne med noe sånt, i og med at det slik jeg forstår det er ytterst få elever fra TIP VG1 som har hatt opplæring i fresemaskin, og de som har det har vanligvis ikke hatt mye tid til å øve seg på fresing.

Av de jeg har snakket med, som inkluderer både mine gamle medelever samt mine nye klassekamerater og andre som har gått TIP så er ikke fresen prioritert pensum, blir sett på som for vanskelig eller en hellig maskin som ikke skal røres. Det syns jeg er veldig trist siden det er en meget viktig og integral del av maskinopplæringen og et ekstremt nyttig verktøy. Ikke er det spesielt vanskelig heller, det gjelder bare å tenkte seg om og holde tunga rett i munnen. Det kan bli vanskelig hvis man skal begynne å lage heliske tannhjul og sånne ting, men grunnopplæringen innen fres er på ingen måte rocket science.

Vi skulle ihvertfall lage en dreiestålholder til hurtigstål, som er en blokk med et spor og noen skruer som holder på plass dreieskjæret når man dreier:

DSC_0672_v2.jpg

En grei oppgave for å bli kjent med maskinene på verkstedet og friske opp fresekunnskapene.

s-l225.jpg

Som sagt tar det tid å venne seg til nytt verksted, og det oppbevaringsstedet for metall jeg så i hadde ikke det nødvendige råstålet, så jeg satte i gang å frese ut et adekvat arbeidsstykke fra en stor kloss med stål. Dette viste seg var unødvendig da jeg ble opplyst om hvor vi hadde firkantstål.

Som vi ser på tegningen skal holderen bli 24,5mm begge veier. Å bruke 25 x 25 millimeter firkantstål byr på noen problemer. Stålet kommer ikke helt firkantet, men med kraftig avrundede hjørner, og når det kun skal fjærnes en halv millimeter er det ikke nok til å rette opp kantene. Men læreren sa det ikke var kritisk at hjørnene ble nokså avrundet, jeg syns bare det er verdt å påpeke at det er viktig å starte med et stort nok utganspunkt i alle dimensjoner til å ende opp med det tegningen viser.

Toleranser og overflatefinhet var ikke oppgitt så det ble en oppgave i seg selv å se hvor korrekte mål og god finish jeg fikk til.

Jeg tenkte det var en god idé å rette og rense sidene så jeg planfreste en side og snudde arbeidsstykket 90° og freste den andre siden. Slik hadde jeg gode referanseflater for videre bearbeiding. Jeg flyttet ikke på noe eller indekserte maskinen på nytt da jeg snudde stykket, slik oppnår jeg to teoretisk like kutt og opprettholder den kvadratiske formen til stykket.

DSC_0627.jpg

Jeg endte opp med en endring i tykkelse på 0,1 mm over lengden av stykket; hva det kommer av er vanskeligå si, kan ha vært spon under en side eller dårlige parallellklosser. Jeg spente stykket godt fast og hamret det ned for å sikre god kontakt med støtten, men allikevel ble det et merkverdig avvik her.

Det spilte uansett liten rolle siden jeg nå som sagt hadde to gode referanseflater for videre arbeid. Jeg freste raskt de to andre sidene bare for å få vekk fabrikkbelegget og få et bedre grep i stikka, samt å preparere siden for sporet.

Jeg freste så ut sporet; jeg må innrømme at jeg måtte gjøre dette to ganger siden jeg ikke la merke til at en side, som man kan se på tegningen, er 7mm. Jeg overså dette og antok bare at sporet skulle være midt på. Det virker som uansett hvor mange ganger det blir banket inn i hodene våres i løpet av skolegangen at det er viktig å lese oppgaveteksten nøye gjør man fremdeles slike glipper.

Men jeg tok meg heldigvis i det ganske kjapt og begynte på nytt. Sporet skulle være 10,2mm, et snodig tall, både dypt og bredt. Til dette brukte jeg en 8mm pinnefres.

DSC_0629.jpg

Dersom man bruker en fres som er nøyaktig det målet man skal ha kan kuttet bli litt for stort siden fresen kan hoppe litt eller vandre eller på andre måter ta av litt for mye. Det er bedre å ta dette i flere operasjoner.

Her lærte jeg noe nytt om med- og motfresing. Et tema jeg ikke har snakket så mye om før.

Motfresing er når arbeidsstykket mates i motsatt retning av fresens rotasjonsretning slik at de jobber mot hverandre. Sponet vil starte tynt og gradvis øke i tykkelse mot kuttets slutt.

Motfresing.png

 

Medfresing er når arbeidstykket mates i samme retning som fresens rotasjonsretning slik at de jobber med hverandre. Sponet vil starte tykt og gradvis synke i tykkelse mot kuttets slutt.

Medfresing.png

Motfresing er stort sett betraktet som den trygge metoden å frese på, siden arbeidskreftene jobber mot hverandre og hjelper hverandre til å kutte. Medfesing blir sett på som en utrygg fresemetode, men den kan fint brukes. Det nye jeg lærte om dette var at medfresing ofte gir bedre overflate rett ut av maskinen enn motfresing. Det farlige met medfresing er hvis kuttdybden og/eller matehastigheten er stor eller det er slakk i ledeskruen så kan verktøyet grave seg inn i arbeidstykket og bli ødelagt, ødelegge arbeidsstykket, eller i værste fall sende arbeidsstykket flyvende av gårde hvis oppspenningen er dårlig. Med motfresing vil dette ikke kunne skje.

Så for å få korrekte mål og fine overflater startet jeg med et 8mm spor ned til korrekt dybde, litt lenger enn 7mm inn fra en side. Jeg gikk ned 1mm av gangen. Jeg kunne tatt mer, men jeg valgte å ikke belaste verktøyet unødvendig mye. Deretter freste jeg hver side separat til nær korrekte mål og medfreste den siste biten som var igjen på hver side for en god finish.

DSC_0631.jpg

Etter at dette var gjort var det over til plansliperen for å... planslipe sidene.

DSC_0632.jpg

Plansliper er en maskin jeg ikke har vært så veldig mye borti før. Vi hadde en på skolen i fjor, men den var i ustand. Jeg kjenner til grunnprinsippene, men jeg har aldri brukt den ordentlig før.

Det viste seg å ikke være noe hokus pokus det heller. Det viktigste er at, som i alle maskiner, at arbeidsstykket er skikkelig spent fast. Planslipere bruker vanligvis et elektromagnetisk bord for å gjøre fast det som skal slipes. Dersom det som skal slipes har liten overflate eller lite kontant med bordet kan det fyke av gårde hvis man mater litt fort og dypt.

For sikkerhetsskyld la jeg en solid stålkloss på den siden av arbeidsstykket som slipesteinen dytter på.

Når arbeidssykket er lagt på plass skrur man på strømmen og det sitter bom fast. Så kan maskinen skrus på, høyden stilles inn og så beveges bordet frem og tilbake under slipehjulet mens bordet mates inn eller ut.

DSC_0633.jpg

Plansliping gir en meget pen overflate syns nå jeg, og etterpå kreves det relativt lite arbeid for å blankslipe og polere delen. Det produserer også en meget rett flate.

Jeg brukte plansliperen til å ta arbeidsstykket ned til korrekte dimensjoner. Jeg gikk litt for nærme eksakte mål her og havnet litt på undersiden av målene etter pussing og polering, så det er lurt å legge på en tidel eller så for sluttpussen.

DSC_0637.jpg

Etter litt pussing rettet jeg sidene med en solid pinnefres og tok stykket ned til korrekt lengde.

DSC_0638.jpg

Etter dette kunne jeg bore hullene til set-skruene og gjenge disse. M6 skruer krever 5mm gjengebor, ingen overraskelser her.

Til slutt våtslipte jeg holderen med 600 og 1200 papir og polerte den.

DSC_0639.jpg
DSC_0640.jpg

Ferdig og klar til å brukes! Jeg endte opp med mål på +/- 0,1mm og ganske fin overflate. Resultatet ble ganske pent og jeg er nokså fornøyd.

Jeg kunne ha fått en enda bedre overflate her og der, det er fremdeles noen veldig små hakk og riper. Noe av det stammer fra oppspenningen i stikken til fresen da jeg skulle bore hullene til skruene, men selv om jeg renset stikkekjevene og var påpasselig med holderen og behandlet den forsiktig etter sluttpussen var kjevene såpass 'ødelagt' at de ble noen merker.

Men funksjonelt er den tipp topp.